Supporting Information

Synergetic effects on the capture and release of CO₂ using guanidine and amidine superbases

Todd Elliott^{1,†}, Luc Charbonneau^{1,†}, Eva Gazagnaire¹, Ilkka Kilpeläinen¹, Bianka Kótai², Gergely Laczkó², Imre Pápai²,* and Timo Repo¹,*

1 Department of Chemistry, University of Helsinki, P.O. Box 55, FIN-00014, Finland 2 Institute of Organic Chemistry, Research Centre for Natural Sciences, H-1117 Budapest, Hungary

Timo Repo: timo.repo@helsinki.fi Imre Pápai: papai.imre@ttk.hu

Contents

1	Gen	era	l Information	3	
2	2 Experiments				
	2.1	De	esign of Experiment	8	
3	Con	ıpu	tational Details	9	
	3.1	Μ	ethodology	9	
	3.2	CC	${ m O}_2$ capture in acetonitrile	11	
	3.2.3	1	CO ₂ capture with DBN	11	
	3.2.2	2	CO ₂ capture with TBN	12	
	3.2.3	3	CO ₂ capture with MTBN	13	
	3.3	CC	O_2 capture in buthyl acetate	13	
	3.4	Ca	rbonate formation	14	
	3.5	Pr	oton affinites	15	
	3.6	Тс	otal energy data	16	
	3.7	Ca	rtesian coordinates	20	
	3.7.3	1	Reactants	20	
	3.7.2	2	Precomplexes	23	
	3.7.3	3	Transition states	29	
	3.7.4	4	Products		
	3.7.	5	Protonated bases	40	

1 General Information

 CO_2 was sparged to improve CO_2 solubility for Table 1(MS), however greater amounts of SB were required for sparging and so the majority of data in supporting information was collected with CO_2 streamed at the surface of the solution.

2 Experiments

Solvents were purchased from Fisher Scientific and TCI Europe. Bases were obtained from Liuotin. CO2 was purchased from Woikoski, SFE grade (99.995%), and pumped directly into the reaction vessels.

Experiments were conducted under atmospheric conditions. All solutions were at a 30% wt concentration of superbase to solvent. Monoethanolamine (MEA) in industry is typically used around 30% due to constraints on machinery (corrosion issues). Our experiments modelled this value for comparison with industrial standards. Solvents were not dried deliberately to test the hardiness of the systems. The carbon dioxide stream used was also not dried beforehand for the same reason. To establish the CO_2 release temperature for every superbase solvent combination, an initial experiment was carried out. Table S1 presents the solvents originally chosen for this study that were mixed with the 8 different superbases used.

Experimental method for establishing CO_2 release temperature: 10g of superbase-solvent solution was stirred in a flask with a stream of carbon dioxide directed at the surface for 5 minutes. The CO_2 exposed solution was then placed in a preheated oil bath at 60°C. Whilst stirring the temperature was incrementally increased until bubbles started to form, observing the carbon dioxide being released. The time the solution produced bubbles for was also noted. The temperature was increased up until the boiling point of the solvent.

Experimental method for quantifying the amount of CO_2 released: 10g of superbase-solvent solution was stirred in a flask with a stream of carbon dioxide directed at the surface for 15 minutes. The CO_2 exposed solution was then placed in a preheated oil bath at the SB-solvent CO_2 release temperature, established in table S2. However, when the flask was placed in the oil bath for reversal, a tube was fitted to the flask to redirect the released gas into a manual burette system to capture and measure the gas produced.

 CO_2 capture capacity from repeated capture/release cycles: The superbase-solvent solution was exposed to five capture and release cycles of CO_2 using a manual burette system to verify the reproducibility and hardiness of the system. 10g of superbase-solvent solution was stirred in a flask with a stream of carbon dioxide directed at the surface for 15 minutes. The CO_2 exposed solution was then placed in a preheated oil bath at the SB-solvent CO2 release temperature, established in table S2. However, when the flask was placed in the oil bath for reversal, a tube was fitted to the flask to redirect the released gas into a manual burette system to capture and measure the gas produced. After reversal the flask was disconnected from the burette and then this process was performed again, for a total of 5 times.

Experimental method for results in MS Table 1: 30g of superbase-solvent solution was stirred in a flask and carbon dioxide was sparged through the solution for 30 minutes. The CO_2 exposed solution was then placed in a preheated oil bath at the established SB-solvent CO_2 release temperature and a tube was fitted to the flask to redirect the released gas into a manual burette system to capture and measure the gas produced. Results are presented in Table 1 in the manuscript.

Solvent	classification	Green	BP (°C)	Polarity Index (P')	dielectric constant
Ethanol	alcohol	R	78	4.3	24.55
Ethyl acetate	ester	R	77	4.4	6.02
n-Butyl acetate	ester	R	126	4	5.01
THF	ether	Р	66	4	7.58
1,4-dioxane	ether	Н	101	4.8	2.21
Toluene	hydrocarbon	Р	111	2.4	2.38
Cyclohexane	hydrocarbon	Р	81	0.2	2.02
Acetonitrile	polar aprotic	Р	82	5.8	35.94
Propylene carbonate	polar aprotic	Р	242	6.1	64.92
water	water	R	100	10.2	78.36

Table S1. Solvents used in study and comparative rating on how green they are. R=recommended, P= problematic and H=hazardous.

Table S2 presents the data on which temperature the superbase-solvent mixtures released carbon dioxide at, and how long it took for no more carbon dioxide to be released. It also includes reversibility, and miscibility information. 30% wt concentration solutions were used, where the superbase was 3g in weight. 10g of superbase-solvent solution was stirred in a flask with a stream of carbon dioxide directed at the surface for 5 minutes. The CO_2 exposed solution was then placed in a preheated oil bath at 60°C. While stirred the temperature was incrementally increased until bubbles started to form, observing the carbon dioxide being released. The time the solution produced bubbles for was also noted. The temperature was increased up until the boiling point of the solvent, observing an increase in gas release.

All solutions formed a white-ish precipitate apart from water and ethanol. Upon release of CO_2 the precipitate disappears.

	DBU		DBN		TMG	ŕ	TBN		TBU		TBD		mTBI)	mTB	N
Solvent	Reversibility temperature (°C)	Time CO2 release (min)														
Ethanol	60	11	65	14	75	20	76	45	60	10	63	13.5	64	11	67	20
Ethyl acetate	68	4	60	4.5	70	2	77ª	4 ^b	60 ^a	16 ^{a,c}	61	11	72	18	60	3
n-Butyl acetate	80	2	60	8	65	4	90ª	12 ^{a,c}	62ª	15 ^{a,c}	83	11.5	65	13	60	6.5
THF	60	20	60	11	75	2	70	9 ^b	60	9	61	3.5 ^b	60 ^a	a,c	60	8
1,4-dioxane	75	5	60	12	65	7	а	a	88 ^a	9 ^{a,c}	90ª	15.5 ^{a,c}	60	11.5	62	8.5
Cyclohexa ne	70	5	60	14	66	8	70 ^a	15 ^{a,c}	80 ^a	a,c	73ª	5.5 ^{a,c}	65	15	60	10
Toluene	70	7	60	10	65	7	a	a,b	109 ^a	a,c	91	4.5 ^b	60	9	60	10
Acetonitril e	60	4	60	10.5	62	6	68ª	a	60	12 ^b	60	13.5 ^b	60	7	60	10
Propylene carbonate	65	2	60	12	60	7	106ª	2 ^{a,c}	85ª	48 ^{a,c}	114	48 ^b	68	7	75	12.5

Table S2 Superbases in different solvents and the temperature at which CO₂ is released. ^a mixture is irreversible or only partially reversible,

^b superbase is miscible in solvent at 30°C, ^c superbase is miscible at 50°C

Table S3 presents data for the molar ratio of superbase to CO_2 for the best five solvents. 10 g of 30% wt superbase-solvent solution was stirred with a direct stream of CO_2 at the surface for 15 minutes. After which the flask had a tube was fitted that was connected to a manual burette system to collect the CO_2 gas that was evolved for quantification. The flask was the submerged in an oil bath at the, now established, CO_2 release temperature. TMG and TBU were not included; TMG has longer-term stability issues and TBU had solubility issues after the CO_2 release process.

8										
	DBU	DBN	TBN	TBD	mTBN	mTBD				
Solvent	CO ₂ /SB	CO ₂ /SB	CO ₂ /SB	CO_2/SB	CO ₂ /SB	CO ₂ /SB				
	mol/mol	mol/mol	mol/mol	mol/mol	mol/mol	mol/mol				
ethanol	0.123	0.185	0.048	0.035	0.154	0.044				
ethyl acetate	0.084	0.156	а	0.018	0.101	0.042				
butyl acetate	0.094	0.072	0.312	0.015	0.094	0.091				
acetonitrile	0.064	0.307	а	0.211	0.161	0.050				
propylene	0.139	0.103	0.236	b	0.130	0.071				
carbonate										

Table S3. SB-solvent combinations and the molar ration of SB-CO₂ captured. ^a an irreversible reaction meaning severely diminished or no CO₂ generated ^b A side reaction deactivates the guanidine from capturing CO₂ after 1 regeneration cycle.

^a An irreversible reaction meaning severely diminished or no CO₂ generated

^b A side reaction deactivates the guanidine from capturing CO₂ after 1 regeneration cycle.

Table S4 compared the data for the molar ratio of superbase to CO_2 in absence of water for the release of CO_2 with the presence of water for two best candidates in their respective solvent. In this procedure 1 mL of water was added forcing the formation of the bicarbonate specie.

Table S4 Comparison of adding 1ml water on the release volume of CO₂

D	BN	TBN			
No water	1ml water	No water	1ml water		
CO ₂ /SB CO ₂ /SB		CO₂/SB	CO₂/SB		
mol/mol	mol/mol	mol/mol	mol/mol		
0.306	0.305	0.312	0.311		

2.1 Experimental work schematic

2.2 Design of Experiment

Design of Experiment surface plot using a quadratic, full factorial model. 3 centre points, and 30 total runs, reproducibility of 0.99 and R2 of 0.823. The software used was MODDE Pro, made by Sartorius.

3 Computational Details

3.1 Methodology

All DFT calculation were carried out using Gaussian 16 [1]. We applied the default ultrafine grid and the default optimization algorithms. All geometries were fully optimized in acetonitrile (MeCN) or in butyl acetate (BuOAc), using the ω B97X-D functional [2], and the 6-311G(d,p) basis set [3]. The solvent effects were taken into account implicitly via the SMD solvation model [4]. The located structures were characterized as energy minima or transition states (TSs) based on the number of imaginary vibrational frequency (zero or one). From the TSs, we followed the intrinsic reaction coordinate (IRC) pathways in both forward and reverse directions, using a Hessian-based predictor-corrector algorithm [5] and we identified the related intermediates accordingly.

The thermal and entropic corrections were also estimated at this level of theory (i. e., in the solution-phase, ω B97X-D/6-311G(d,p)) and within Grimme's quasi rigid rotor harmonic oscillator approximation (q-RRHO) [6]. The Gibbs free energies were calculated at room temperature (298.15 K) and were corrected to the standard 1 mol/dm³ concentration.

In order to estimate the electronic energy more accurately, we calculated the gas-phase electronic energy with the LNO-CCSD(T) method [7] and added the solvation free energy and the thermal and entropic corrections to this electronic energy. The sum of these corrections was estimated by subtracting the gas phase electronic energy calculated at the level of optimization (ω B97X-D/6-311G(d,p)) from the sum of solution-phase electronic energy and thermal and entropic corrections. The total Gibbs free energy of a structure was calculated according to equation 1, where E_{\circ} is the the LNO-CCSD(T)/CBS electronic energy, ΔG_{\circ}^{solv} is the entropic and solvation correction, and ΔG_{conc} is the concentration correction.

$$G = E_{\circ} + \Delta G_{\circ}^{solv} + \Delta G_{conc} \tag{1}$$

The LNO-CCSD(T) calculations were carried out with the MRCC program [8]. The CCSD(T) correlation energy was extrapolated as

$$E_{\rm N-T} = E_{\rm T} + \frac{E_{\rm T} - E_{\rm N}}{2}$$
(2)

where N and T refer to "normal" and "tight" composite cutoff thresholds offered by the MRCC program. The LNO-CCSD(T) calculations were carried out using the correlation consistent

basis set developed by Dunning [9]. The complete basis set limit of the LNO-CCSD(T) energies were estimated relying on extrapolation techniques employing the aug-cc-pVTZ and aug-cc-pVQZ basis sets. From the results with the aug-cc-pVTZ (TZ) and the aug-cc-pVQZ (QZ) basis sets, we extrapolated towards the complete basis set (CBS) limit of the Hartree-Fock and the correlation energy according to [10]:

$$E_{\rm CBS}^{\rm HF} = E_{\rm QZ}^{\rm HF} + \frac{5\left(E_{\rm QZ}^{\rm HF} - E_{\rm TZ}^{\rm HF}\right)}{4\exp\left[6.57\left(\sqrt{4} - \sqrt{3}\right)\right]}$$
(3)

$$E_{\text{CBS}}^{\ C} = \frac{3^3 E_{\text{TZ}}^{\ C} - 4^3 E_{\text{QZ}}^{\ C}}{3^3 - 4^3} \tag{4}$$

We estimated the CCSD(T)/CBS limit by extrapolating towards the CCSD(T) limit on the TZ basis and extrapolating towards the CBS limit with the normal threshold. The final LNO-CCSD(T)/CBS energies were calculated according to the following formula:

$$E_{\text{CCSD}(\text{T})}^{\text{CBS}} = E_{\text{N}}^{\text{CBS}} + E_{\text{N}-\text{T}}^{\text{TZ}} - E_{\text{N}}^{\text{TZ}}$$
(5)

where E_{N}^{CBS} is the sum of E_{CBS}^{HF} and E_{CBS}^{C} , whereas E_{N-T}^{TZ} and E_{N}^{TZ} refer to CCSD(T) correlation energies. The correlation of the core electrons was neglected.

Conformational search was carried out for all bases, complexes and transition states with the Macromodel utility of the Schrödinger program [11] and the OPLS_2005 force field [12]. The promising structures were optimized with DFT and the most stable ones are presented.

References:

[2] J. D. Chai and M. Head-Gordon, *Phys. Chem. Chem. Phys.*, 2008, **10**, 6615-6620.

[4] A. V. Marenich, C. J. Cramer, D. G. Truhlar, Journal of Physical Chemistry B, 2009, 113, 6378-6396.

^[1] Gaussian 16, Revision C.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2016.

^[3] a) R. Krishnan, J. S. Binkley, R. Seeger, J. A. Pople, Self-consistent molecular orbital methods. XX. A basis set for correlated wave functions. *J. Chem. Phys.*, **1980**, *72*, 650–654. b) A. D. McLean, G. S. Chandler, Contracted Gaussian basis sets for molecular calculations. I. Second row atoms, Z=11–18. *J. Chem. Phys.*, **1980**, *72*, 5639–5648. c) T. Clark, J. Chandrasekhar, G. W. Spitznagel, P. v. R. Schleyer, Efficient diffuse function-augmented basis sets for anion calculations. III. The 3-21+G basis set for first-row elements, Li–F. *J. Comput. Chem.*, **1983**, *4*, 294–301. d) M. J. Frisch, J. A. Pople, J. S. Binkley, Self-consistent molecular orbital methods 25. Supplementary functions for Gaussian basis sets. *J. Chem. Phys.*, **1984**, *80*, 3265–3269.

[5] C. Gonzalez, & H. B. Schlegel, The Journal of Physical Chemistry, 1990 94, 5523-5527.

[6] S. Grimme Chemistry - A European Journal, 2012, 18, 9955-9964.

[7] a) P. R. Nagy, M. Kállay, *JCTC*, 2019, 15, 5275-5298; b) P. R. Nagy, G. Samu, M. Kállay, *JCTC*, 2018, 14, 4193-4215; c) P. R. Nagy, M. Kállay, *J. Chem. Phys.* 2017, 146, 214106

[8] a) M. Kállay, P. R. Nagy, D. Mester, Z. Rolik, G. Samu, J. Csontos, J. Csóka, P. B. Szabó, L. Gyevi-Nagy, B. Hégely, I. Ladjánszki, L. Szegedy, B. Ladóczki, K. Petrov, M. Farkas, P. D. Mezei, A. Ganyecz, The MRCC Program System: Accurate Quantum Chemistry from Water to Proteins, *J. Chem. Phys.*, 2020, 152, 074107. b) M. Kállay, P. R. Nagy, D. Mester, Z. Rolik, G. Samu, J. Csontos, J. Csóka, P. B. Szabó, L. Gyevi-Nagy, B. Hégely, I. Ladjánszki, L. Szegedy, B. Ladóczki, K. Petrov, M. Farkas, P. D. Mezei, A. Ganyecz, R. A. Horváth, MRCC, a Quantum Chemical Program Suite. (https://www.mrcc.hu/)

[9] T. H. Dunning, Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen. *J. Chem. Phys.*, **1989**, *90*, 1007-1023

[10] a) A. Karton, J. M. L. Martin, Comment on: "Estimating the Hartree–Fock limit from finite basis set calculations" Jensen F (2005) Theor Chem Acc 113:267. *Theor. Chem. Acc.*, **2006**, *115*, 330-333 b) T. Helgaker, W. Klopper, H. Koch, J. Noga, Basis-set convergence of correlated calculations on water. *J. Chem. Phys.*, **1997**, *106*, 9639–9646

[11] Maestro, version 11.8. Schrödinger, LLC, New York, https://www.schrodinger.com/maestro.

[12] J. L. Banks, H. S. Beard, Y. Cao, A. E. Cho, W. Damm, R. Farid, A. K. Felts, T. A. Halgren, D. T. Mainz, J. R. Maple, R. Murphy, D. M. Philipp, M. P. Repasky, L. Y. Zhang, B. J. Berne, R. A. Friesner, E. Gallicchio, R. M. Levy. Integrated Modelling Program, Applied Chemical Theory (IMPACT). *J. Comp. Chem.* **2005**, *26*, 1752-1780.

3.2 CO₂ capture in acetonitrile

3.2.1 CO₂ capture with **DBN**

The CO₂ capture was first studied with the superbase 1,5-Diazabicyclo[4.3.0]non-5-ene (**DBN**). It was found that CO₂ may form a weakly bounded precomplex with **DBN**, from which the zwitterionic adduct is formed through a relatively low barrier (Figure S1). The formation of the adduct from the precomplex is not favoured in terms of gas phase electronic energies (LNO-CCSD(T), green numbers in Figure S1) but is favoured in terms of Gibbs free energy as the polar solvent stabilizes the zwitterionic structure. The overall process is predicted to be slightly endergonic (1.1 kcal/mol).

Figure S1. Structures for the CO₂ capture with **DBN** in acetonitrile. N-C distances are given in Å and C-O-C bond angles are given in degrees. Gibbs free energies (black) and gas phase electronic energies (green) with respect to separated reactants are presented in kcal/mol.

3.2.2 CO₂ capture with **TBN**

Next, we studied the CO_2 capture with 1,5,7-triazabicyclo(4.4.0)dec-5-ene (**TBN**). The reaction proceeds analogously to DBN, but the formation of the adduct is exergonic in this case

(-4.5 kcal/mol). This difference originates from the N-H…O hydrogen bond in **TBN-CO**₂ (Figure S2). This interaction is negligible in the precomplex and the transition state.

Figure S2. Structures for the CO_2 capture with **TBN** in acetonitrile. Selected bond distances are given in Å. Gibbs free energies (black) are given in parenthesis in kcal/mol with respect to separated reactants. The analogous stabilites with **DBN** are written in squared brackets (orange).

It is possible that the envisioned structure of **TBN** tautomerizes and the tautomer may also act as a superbase (Scheme S1). For this reason, we also studied the CO_2 capture with the **TBN** tautomer (denoted as **TBN***). The stability of TBN* with respect to TBN is 0.8 kcal/mol. This difference is reflected in the stability of the precomplex (5.7 kcal/mol instead of 5.1 kcal/mol) but not in the transition state (9.0 kcal/mol instead of 8.9 kcal/mol). The stability of the adduct is lower (-2.4 kcal/mol instead of -4.5 kcal/mol), which is evidenced by the elongated C-N bond in **TBN*-CO**₂ (Figure S1).

Scheme S1. The tautomerization of TBN.

Figure S3. Structures for the CO₂ capture with **TBN**^{*} in acetonitrile. Selected bond distances are given in Å. Gibbs free energies (black) are given in parenthesis in kcal/mol with respect to separated reactants. The analogous stabilites with **TBN** are written in squared brackets (orange).

3.2.3 CO₂ capture with **MTBN**

The capture of CO_2 was also investigated with the methylated **TBN** (7-Methyl-1,5,7-triazabicyclo(4.4.0)dec-5-ene, **MTBN**). The adduct formation again proceeds in a similar manner to **DBN**, but in this case, the barrier is notably higher (13.5 kcal/mol) and the adduct is unstable (lies 6.2 kcal/mol higher than separated reactants). The structures are depicted in Figure S4. It is clear that the adduct formation becomes unfavoured due to the repulsion between the CO_2 and the methyl group of **MTBN**. In order to avoid the steric hindrance, the orientation of the CO_2 group differs from the ideal arrangement. This strain also increases the barrier.

Figure S4. Structures for the CO_2 capture with **MTBN** in acetonitrile. Selected bond distances are given in Å. The dihedral angle corresponding to the atoms marked with * is presented with green. Gibbs free energies (black) are given in parenthesis in kcal/mol with respect to separated reactants. The analogous stabilites with **DBN** are written in squared brackets (orange).

3.3 CO₂ capture in butyl acetate

All structures were reoptimized in butyl acetate, but the geometries only show marginal differences if we compare them in the two solvents. A few structures are compared in Figure S5. The energetics, however, changes significantly if we move to another solvent (Table S5).

This is due to the different polarity of the two solvents as the less polar butyl acetate stabilizes the adducts and the transition states to a lower extent.

Figure S5. Structures for the CO_2 capture with various bases in acetonitrile. Selected bond distances are given in Å for the structures in acetonitrile and the analogous values in the butyl acetate structures are written in orange (with italics). Gibbs free energies are given in parenthesis in kcal/mol with respect to separated reactants (black for acetonitrile and orange for butyl acetate).

Fable S5. Gibbs free energies of base-CO ₂ weakly bounded complexes (B ···CO ₂) transition states (TS) and
zwitterionic adducts (B-CO ₂) with respect to separated reactants (B + CO ₂)
in different solvents [kca]/mol]

	in anterent borvents [Real/ mor].									
	D	BN	TBN		TBN*		mTBN			
	MeCN	BuOAC	MeCN	BuOAC	MeCN	BuOAC	MeCN	BuOAC		
$B + CO_2$	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		
$B \cdots CO_2$	4.9	4.3	5.1	3.9	4.8	4.3	5.5	4.9		
TS	9.0	8.7	8.9	8.2	8.2	7.7	13.5	14.0		
B-CO ₂	1.1	4.3	-4.5	-1.9	-3.2	-0.7	6.2	9.9		

3.4 Carbonate formation

In case water is added to the solutions, it is possible that it assists the capture of carbondioxide. In this case, hydrogen-carbonate could be formed. This hypothesis was investigated with the base **TBN**.

Initially, H_2O forms a hydrogen bond with the base and CO_2 may coordinate to this complex (Figure S6). CO_2 is weakly bonded in this precomplex, no significant interaction is observed either with water or **TBN**. In **TS-TBN-H**₂**O**, a bond is being formed between the oxygen of the water molecule and the carbon of CO_2 , and H_2O is being deprotonated. The barrier is notably larger than it was without water (19.2 kcal/mol instead of 8.9 kcal/mol in acetonitrile), but the reaction remains feasible at room temperature. Once the product is formed, it spontaneously rearranges so that the formation of stronger hydrogen bonds is possible. This rearrangement makes the otherwise slightly endergonic process (1.9 kcal/mol in MeCN and 3.8 kcal/mol in BuOAc) slightly exergonic (-1.5 kcal/mol and -1.0 kcal/mol respectively).

However, the formation of the adduct is still less favoured than the formation of **TBN-CO**₂ (-4.5 kcal/mol and -1.9 kcal/mol, see table S5).

These results imply that the formation a HCO_3^- -base-H⁺ adduct is feasible in case water is added, but it is unfavoured both kinetically and thermodynamically as compared to the formation of the base-CO₂ adduct. This conclusion is in agreement with the experimental observation that the addition of water does not change the results significantly.

Figure S6. Structures for the CO₂ capture with **TBN-H**₂**O**. Selected bond distances are given in Å for the structures in acetonitrile. Gibbs free energies are given in parenthesis in kcal/mol with respect to separated reactants (black for acetonitrile and orange for butyl acetate).

3.5 Proton affinities

We calculated the proton affinity of each base discussed so far to demonstrate that the different feasibility of the CO_2 capture originates from specific interactions with the carbondioxide and not from the different intrinsic basicity of the various bases. The proton affinity was calculated as the Gibbs free energy of the following reaction:

base + H⁺ base-H⁺

The proton affinities in both solvents are collected into Table S6. The values differ no more than 1.3 kcal/mol in MeCN and no more than 1.0 kcal/mol in BuOAc. In contrast, the stability

of the CO2-base adducts vary from -4.5 kcal/mol to 6.2 kcal/mol in MeCN and from -1.9 kcal/mol to 9.9 kcal/mol in BuOAc (see Table S5). This implies that their different stability originates from secondary interactions between CO_2 and the bases. In case of TBN and TBN*, a strong hydrogen bond can be observed (Figures S2 and S3), whereas with MTBN, a steric repulsion between the CO_2 and the methyl group decreases the stability (Figure S4).

bulyi acetate (BuOAC) [kcai/moi].							
base	MeCN	BuOAc					
DBN	-293.6	-286.0					
TBN	-292.6	-285.3					
TBN*	-293.4	-286.0					
MTBN	-292.3	-285.0					

 Table S6. Proton affinities for the bases of interest in acetonitrile (MeCN) and butyl acetate (BuOAc) [kcal/mol].

3.6 Total energy data

We present the calculated energies of the introduced structures in **Table S7**. For each structure, the first number is the Gibbs free energy calculated at the level of optimization (ω B97X-D/6-311G(d,p), solution-phase, quasi-RRHO approximation). Then gas-phase electronic energy is included first calculated at the same level of theory, and then with the LNO-CCSD(T) method. The final data is the calculated total Gibbs-free energy of the structure, which includes the concentration correction to the free energy when switching from *p* = 1 atm (ideal gas standard state) to *c* = 1 mol/dm³. For computational details, see earlier.

		05		
	G ₀	$E_0^{\rm DFT}$	$E_0^{\rm CC}$	G
		MeCN		
CO ₂	-188.5859	-188.5767	-188.4206	-188.4267
H ₂ 0	-76.4273	-76.4233	-76.3773	-76.3783
DBN	-383.3067	-383.4461	-382.9775	-382.8350
DBN-H	-383.7837	-383.8640	-383.3863	-383.3030
DBNCO ₂	-571.8838	-572.0337	-571.4070	-571.2540
DBN-TS	-571.8787	-572.0274	-571.3992	-571.2475
DBN-CO ₂	-571.8885	-572.0193	-571.3938	-571.2599
TBN	-399.3623	-399.4860	-399.0189	-398.8923

Table S7. Total energy data.

TBN-H	-399.8394	-399.9039	-399.4260	-399.3585
TBNCO ₂	-587.9389	-588.0747	-587.4496	-587.3108
TS-TBN	-587.9348	-588.0692	-587.4421	-587.3048
TBN-CO ₂	-587.9540	-588.0697	-587.4449	-587.3262
TBN-H ₂ OCO ₂	-664.3644	-664.5172	-663.8405	-663.6847
TS-TBN-H ₂ O	-664.3513	-664.5012	-663.8196	-663.6667
TBN-H ₂ O-CO ₂	-664.3769	-664.5116	-663.8320	-663.6943
TBN-H ₂ O-CO ₂ '	-664.3828	-664.5268	-663.8466	-663.6996
TBN*	-399.3616	-399.4853	-399.0177	-398.8909
TBN*CO ₂	-587.9389	-588.0743	-587.4484	-587.3100
TS-TBN*	-587.9349	-588.0702	-587.4430	-587.3047
TBN*-CO ₂	-587.9506	-588.0687	-587.4440	-587.3228
MTBN	-438.6412	-438.7925	-438.2716	-438.1173
MTBN-H	-439.1173	-439.2120	-438.6808	-438.5830
MTBNCO ₂	-627.2171	-627.3778	-626.6990	-626.5352
TS-MTBN	-627.2063	-627.3658	-626.6849	-626.5224
MTBN-CO ₂	-627.2152	-627.3555	-626.6774	-626.5341
		D 04		
<u> </u>	100 5060	100 5767	100 4206	100 4277
	-100.3000	-100.3707	-188.4200	-100.4277
1120	-70.4255	-70.4233	-70.3774	-70.3703
DBN	-383.3041	-383.4463	-382.9776	-382.8324
DBN-H	-383.7689	-383.8640	-383.3863	-383.2881
DBNCO ₂	-571.8830	-572.0338	-571.4069	-571.2531
DBN-TS	-571.8775	-572.0266	-571.3983	-571.2462
DBN-CO ₂	-571.8822	-572.0211	-571.3951	-571.2532
TBN	-399.3588	-399.4861	-399.0190	-398.8886
TBN-H	-399.8242	-399.9040	-399.4261	-399.3433
TBNCO ₂	-587.9384	-588.0749	-587.4497	-587.3101
TS-TBN	-587.9336	-588.0688	-587.4414	-587.3032
TBN-CO ₂	-587.9474	-588.0711	-587.4460	-587.3193
TBN-H ₂ OCO ₂	-664.3624	-664.5185	-663.8411	-663.6819
TS-TBN-H ₂ O	-664.3490	-664.5010	-663.8189	-663.6639
TBN-H ₂ O-CO ₂	-664.3695	-664.5136	-663.8338	-663.6867
TBN-H ₂ O-CO ₂ '	-664.3778	-664.5283	-663.8478	-663.6944
TRN*				

TBN*CO ₂	-587.9374	-588.0746	-587.4486	-587.3084
TS-TBN*	-587.9337	-588.0699	-587.4423	-587.3030
TBN*-CO ₂	-587.9445	-588.0701	-587.4451	-587.3164
MTBN	-438.6384	-438.7927	-438.2718	-438.1145
MTBN-H	-439.1031	-439.2121	-438.6807	-438.5687
MTBNCO ₂	-627.2163	-627.3779	-626.6989	-626.5343
TS-MTBN	-627.2038	-627.3648	-626.6838	-626.5199
MTBN-CO ₂	-627.2080	-627.3577	-626.6790	-626.5264

Notation: E_0^{DFT} and E_0^{CC} refer to gas phase electronic energies calculated at the ω B97X-D/6-311G(d,p) and the LNO-CCSD(T)/CBS level. G_0 is the Gibbs free energy calculated at the level of optimization, and G is the Gibbs free energy corrected with E_0^{CC} and concentration correction (0.001706). All values are in atomic units (Hartree).

 Table S8. Electronic energies obtained from the LNO-CCSD(T) calculations. These values were used to approximate the LNO-CCSD(T)/CBS energies presented in Table S6.

	E_{TZ}^{HF}	$E_{TZ}^{C}(E_{N})$	E_T	E_{OZ}^{HF}	E_{07}^{C}
	12	12 11/	1	QZ	Q2
			MeCN		
CO ₂	-187.7101	-0.6301	-0.6302	-187.7230	-0.6669
H ₂ 0	-76.0603	-0.2821	-0.2821	-76.0657	-0.2983
DBN	-381.0881	-1.7322	-1.7322	-381.1104	-1.8066
DBN-H	-381.5113	-1.7175	-1.7175	-381.5338	-1.7920
DBNCO ₂	-568.8024	-2.3677	-2.3679	-568.8373	-2.4787
DBN-TS	-568.7861	-2.3766	-2.3771	-568.8207	-2.4874
DBN-CO ₂	-568.7799	-2.3766	-2.3773	-568.8142	-2.4879
TBN	-397.0954	-1.7590	-1.7591	-397.1188	-1.8368
TBN-H	-397.5183	-1.7424	-1.7426	-397.5420	-1.8204
TBNCO ₂	-584.8113	-2.3938	-2.3943	-584.8474	-2.5082
TS-TBN	-584.7972	-2.4006	-2.4012	-584.8331	-2.5149
TBN-CO ₂	-584.8010	-2.3984	-2.3992	-584.8366	-2.5134
TBN-H ₂ 0CO ₂	-660.8782	-2.6837	-2.6842	-660.9195	-2.8139
TS-TBN-H ₂ O	-660.8448	-2.6956	-2.6965	-660.8856	-2.8261
TBN-H ₂ O-CO ₂	-660.8719	-2.6800	-2.6810	-660.9125	-2.8112
TBN-H ₂ O-CO ₂ '	-660.8873	-2.6790	-2.6799	-660.9279	-2.8103
					- /-
TBN*	-397.0948	-1.7582	-1.7584	-397,1182	-1.8360
TBN*CO ₂	-584 8102	-2 3038	-2 3943	-584 8463	-2 5081
2	501.0102	2.5750	2.5745	501.0105	2.5001

TS-TBN*	-584.7976	-2.4010	-2.4016	-584.8335	-2.5153
TBN*-CO ₂	-584.7973	-2.4011	-2.4020	-584.8328	-2.5161
MTBN	-436.1348	-1.9566	-1.9568	-436.1605	-2.0417
MTBN-H	-436.5593	-1.9407	-1.9409	-436.5852	-2.0260
MTBNCO ₂	-623.8467	-2.5928	-2.5930	-623.8851	-2.7144
TS-MTBN	-623.8215	-2.6042	-2.6047	-623.8595	-2.7256
MTBN-CO ₂	-623.8172	-2.6001	-2.6008	-623.8550	-2.7221

BuOAc

CO ₂	-187.7101	-0.6300	-0.6302	-187.7230	-0.6668
H ₂ O	-76.0604	-0.2820	-0.2820	-76.0658	-0.2982
DBN	-381.0884	-1.7320	-1.7321	-381.1106	-1.8065
DBN-H	-381.5113	-1.7175	-1.7176	-381.5338	-1.7920
DBNCO ₂	-568.8023	-2.3678	-2.3681	-568.8372	-2.4788
DBN-TS	-568.7842	-2.3775	-2.3780	-568.8188	-2.4883
DBN-CO ₂	-568.7810	-2.3769	-2.3776	-568.8153	-2.4881
TBN	-397.0957	-1.7588	-1.7589	-397.1190	-1.8366
TBN-H	-397.5185	-1.7422	-1.7424	-397.5422	-1.8202
TBNCO ₂	-584.8112	-2.3939	-2.3944	-584.8473	-2.5083
TS-TBN	-584.7965	-2.4007	-2.4013	-584.8324	-2.5150
TBN-CO ₂	-584.8019	-2.3986	-2.3994	-584.8375	-2.5136
TBN-H ₂ OCO ₂	-660.8793	-2.6825	-2.6832	-660.9207	-2.8129
TS-TBN-H ₂ O	-660.8440	-2.6959	-2.6968	-660.8847	-2.8264
TBN-H2O-CO2	-660.8726	-2.6810	-2.6821	-660.9132	-2.8122
TBN-H ₂ O-CO ₂ '	-660.8876	-2.6800	-2.6809	-660.9282	-2.8113
TBN*	-397.0951	-1.7580	-1.7582	-397.1185	-1.8359
TBN*CO ₂	-584.8101	-2.3940	-2.3945	-584.8462	-2.5084
TS-TBN*	-584.7963	-2.4017	-2.4024	-584.8322	-2.5160
TBN*-CO ₂	-584.7981	-2.4013	-2.4022	-584.8337	-2.5164
MTBN	-436.1350	-1.9563	-1.9565	-436.1607	-2.0415
MTBN-H	-436.5594	-1.9406	-1.9407	-436.5854	-2.0258
MTBNCO ₂	-623.8467	-2.5926	-2.5928	-623.8851	-2.7142
TS-MTBN	-623.8199	-2.6045	-2.6051	-623.8579	-2.7260
MTBN-CO ₂	-623.8183	-2.6006	-2.6012	-623.8561	-2.7226

Notation: E_{TZ}^{HF} and $E_{TZ}^{C}(E_N)$ refer to the Hartree Fock and correlation energy respectively with normal threshold and on TZ basis. E_T is the correlation energy with tight threshold and the TZ basis set. E_{QZ}^{HF} and E_{QZ}^{C} refer to the Hartree Fock and correlation energy respectively with normal threshold and on TZ basis. For further details, see the Computational details section. All values are in atomic units (Hartree).

3.7 Cartesian coordinates

Cartesian coordinates of the optimized geometries are given below in standard XYZ format (coordinates are in Å). For each structure, the first line indicates total number of atoms, second line shows the notation of the molecule (as defined on Figures S1 to S5, with the additional '_mecn' or '_buoac' tags referring to the solvent in which it was optimized).

3.7.1 Reactants

3 CO ₂ _buoac C O O	0.00000 0.00000 0.00000	0.00000 0.00000 0.00000	0.00000 1.15605 -1.15605
3 CO ₂ _mecn C O O	0.00000 0.00000 0.00000	0.00000 0.00000 0.00000	0.00000 1.15621 -1.15621
3 H ₂ O_buoac O H H	0.00000 0.00000 0.00000	0.00000 0.75407 -0.75407	0.11855 -0.47420 -0.47420
3 H ₂ O_mecn O H H	0.00000 0.00000 0.00000	0.00000 0.75377 -0.75377	0.11885 -0.47538 -0.47538
21 DBN_buoac C N C C	-0.19795 -0.22814 -1.62874 0.97989	-0.73518 0.63282 -1.22562 1.40610	0.03134 0.01844 0.04590 0.19027
C C H H C	-1.56177 2.13533 0.86153 1.16208 2.12798	1.17535 0.60906 2.36725 1.61412 -0.82054	0.18974 -0.40675 -0.31877 1.25466 0.13807
H H N H H	2.02208 3.08573 0.83136 2.86083 2.45491	0.58505 1.09928 -1.49329 -1.42414 -0.81380	-1.49554 -0.18211 0.05765 -0.40558 1.18700

Н	-1.75730	1.42339	1.24345
Н	-1.68635	2.08705	-0.40103
С	-2.45083	0.02374	-0.29312
Н	-3.43416	0.03232	0.17781
Н	-2.58779	0.09935	-1.37477
Н	-1.77298	-2.05641	-0.64480
Н	-1.85458	-1.58753	1.05433
21			
DBN_mecn			
С	-0.19925	-0.73459	0.03342
Ν	-0.22725	0.62941	0.02995
С	-1.63000	-1.22488	0.04526
С	0.98165	1.40669	0.18704
С	-1.56241	1.17576	0.19008
С	2.13448	0.60736	-0.41072
H	0.85639	2.36275	-0.32901
Н	1.16906	1.62269	1.24817
C	2.12826	-0.81873	0.14143
H	2.01923	0.5/846	-1.49937
H	3.08520	1.09805	-0.18957
IN LL	0.83205	-1.49505	0.05378
п u	2.00//4	-1.42249	-0.39322
п ц	2.44731	-0.00233	1.19200
н	-1.70222	2 08585	-0.40412
C C	-2 45033	0.02505	-0.29600
Н	-3 43430	0.02303	0.17320
Н	-2 58408	0 10058	-1 37806
Н	-1.77525	-2.05573	-0.64565
Н	-1.85853	-1.58388	1.05430
23			
23 MTBN buoac			
23 MTBN_buoac C	0.25736	0.51755	-0.09919
23 MTBN_buoac C N	0.25736 0.69984	0.51755 -0.79638	-0.09919 -0.22655
23 MTBN_buoac C N N	0.25736 0.69984 1.17471	0.51755 -0.79638 1.41668	-0.09919 -0.22655 0.01239
23 MTBN_buoac C N N C	0.25736 0.69984 1.17471 -0.14405	0.51755 -0.79638 1.41668 -1.89999	-0.09919 -0.22655 0.01239 0.18668
23 MTBN_buoac C N N C C	0.25736 0.69984 1.17471 -0.14405 2.10018	0.51755 -0.79638 1.41668 -1.89999 -0.77621	-0.09919 -0.22655 0.01239 0.18668 0.17418
23 MTBN_buoac C N N C C C C	0.25736 0.69984 1.17471 -0.14405 2.10018 -1.56315	0.51755 -0.79638 1.41668 -1.89999 -0.77621 -1.63268	-0.09919 -0.22655 0.01239 0.18668 0.17418 -0.28680
23 MTBN_buoac C N N C C C C H	0.25736 0.69984 1.17471 -0.14405 2.10018 -1.56315 0.24411	0.51755 -0.79638 1.41668 -1.89999 -0.77621 -1.63268 -2.82279	-0.09919 -0.22655 0.01239 0.18668 0.17418 -0.28680 -0.25180
23 MTBN_buoac C N N C C C H H H	0.25736 0.69984 1.17471 -0.14405 2.10018 -1.56315 0.24411 -0.12359	0.51755 -0.79638 1.41668 -1.89999 -0.77621 -1.63268 -2.82279 -2.01910	-0.09919 -0.22655 0.01239 0.18668 0.17418 -0.28680 -0.25180 1.28300
23 MTBN_buoac C N N C C C H H H C	0.25736 0.69984 1.17471 -0.14405 2.10018 -1.56315 0.24411 -0.12359 -2.02728	0.51755 -0.79638 1.41668 -1.89999 -0.77621 -1.63268 -2.82279 -2.01910 -0.27378	-0.09919 -0.22655 0.01239 0.18668 0.17418 -0.28680 -0.25180 1.28300 0.21156
23 MTBN_buoac C N N C C C H H H H	0.25736 0.69984 1.17471 -0.14405 2.10018 -1.56315 0.24411 -0.12359 -2.02728 -1.59131	0.51755 -0.79638 1.41668 -1.89999 -0.77621 -1.63268 -2.82279 -2.01910 -0.27378 -1.65131	-0.09919 -0.22655 0.01239 0.18668 0.17418 -0.28680 -0.25180 1.28300 0.21156 -1.38019
23 MTBN_buoac C N N C C C H H H H	0.25736 0.69984 1.17471 -0.14405 2.10018 -1.56315 0.24411 -0.12359 -2.02728 -1.59131 -2.23626	0.51755 -0.79638 1.41668 -1.89999 -0.77621 -1.63268 -2.82279 -2.01910 -0.27378 -1.65131 -2.40829	-0.09919 -0.22655 0.01239 0.18668 0.17418 -0.28680 -0.25180 1.28300 0.21156 -1.38019 0.08462
23 MTBN_buoac C N N C C C C H H H N V	0.25736 0.69984 1.17471 -0.14405 2.10018 -1.56315 0.24411 -0.12359 -2.02728 -1.59131 -2.23626 -1.08395	0.51755 -0.79638 1.41668 -1.89999 -0.77621 -1.63268 -2.82279 -2.01910 -0.27378 -1.65131 -2.40829 0.77378	-0.09919 -0.22655 0.01239 0.18668 0.17418 -0.28680 -0.25180 1.28300 0.21156 -1.38019 0.08462 -0.08462 -0.16414
23 MTBN_buoac C N N C C C H H H C H H N H	0.25736 0.69984 1.17471 -0.14405 2.10018 -1.56315 0.24411 -0.12359 -2.02728 -1.59131 -2.23626 -1.08395 -2.99611	0.51755 -0.79638 1.41668 -1.89999 -0.77621 -1.63268 -2.82279 -2.01910 -0.27378 -1.65131 -2.40829 0.77378 -0.02072	-0.09919 -0.22655 0.01239 0.18668 0.17418 -0.28680 -0.25180 1.28300 0.21156 -1.38019 0.08462 -0.16414 -0.22598 1.20500
23 MTBN_buoac C N N C C C H H H C H H C H H	0.25736 0.69984 1.17471 -0.14405 2.10018 -1.56315 0.24411 -0.12359 -2.02728 -1.59131 -2.23626 -1.08395 -2.99611 -2.15795	0.51755 -0.79638 1.41668 -1.89999 -0.77621 -1.63268 -2.82279 -2.01910 -0.27378 -1.65131 -2.40829 0.77378 -0.02072 -0.29843 212300	-0.09919 -0.22655 0.01239 0.18668 0.17418 -0.28680 -0.25180 1.28300 0.21156 -1.38019 0.08462 -0.16414 -0.22598 1.30500 0.07328
23 MTBN_buoac C N N C C C C H H H C H H H C	0.25736 0.69984 1.17471 -0.14405 2.10018 -1.56315 0.24411 -0.12359 -2.02728 -1.59131 -2.23626 -1.08395 -2.99611 -2.15795 -1.52251 2.10906	0.51755 -0.79638 1.41668 -1.89999 -0.77621 -1.63268 -2.82279 -2.01910 -0.27378 -1.65131 -2.40829 0.77378 -0.02072 -0.29843 2.13390 1.02770	-0.09919 -0.22655 0.01239 0.18668 0.17418 -0.28680 -0.25180 1.28300 0.21156 -1.38019 0.08462 -0.16414 -0.22598 1.30500 0.07238 1.34001
23 MTBN_buoac C N N C C C C H H H C H H H C H H	0.25736 0.69984 1.17471 -0.14405 2.10018 -1.56315 0.24411 -0.12359 -2.02728 -1.59131 -2.23626 -1.08395 -2.99611 -2.15795 -1.52251 2.19806 2.66515	0.51755 -0.79638 1.41668 -1.89999 -0.77621 -1.63268 -2.82279 -2.01910 -0.27378 -1.65131 -2.40829 0.77378 -0.02072 -0.29843 2.13390 -1.03770 1.47772	-0.09919 -0.22655 0.01239 0.18668 0.17418 -0.28680 -0.25180 1.28300 0.21156 -1.38019 0.08462 -0.16414 -0.22598 1.30500 0.07238 1.24001 0.41409
23 MTBN_buoac C N N C C C C H H H C H H H C H H C H H C	0.25736 0.69984 1.17471 -0.14405 2.10018 -1.56315 0.24411 -0.12359 -2.02728 -1.59131 -2.23626 -1.08395 -2.99611 -2.15795 -1.52251 2.19806 2.69515 -2.44933	0.51755 - 0.79638 1.41668 - 1.89999 - 0.77621 - 1.63268 - 2.82279 - 2.01910 - 0.27378 - 1.65131 - 2.40829 0.77378 - 0.02072 - 0.29843 2.13390 - 1.03770 - 1.47772 0.69795	-0.09919 -0.22655 0.01239 0.18668 0.17418 -0.28680 -0.25180 1.28300 0.21156 -1.38019 0.08462 -0.16414 -0.22598 1.30500 0.07238 1.24001 -0.41408 -0.8966
23 MTBN_buoac C N N C C C C H H H C H H H C H H H C H H	0.25736 0.69984 1.17471 -0.14405 2.10018 -1.56315 0.24411 -0.12359 -2.02728 -1.59131 -2.23626 -1.08395 -2.99611 -2.15795 -1.52251 2.19806 2.69515 2.44933 3.17300	0.51755 - 0.79638 1.41668 - 1.89999 - 0.77621 - 1.63268 - 2.82279 - 2.01910 - 0.27378 - 1.65131 - 2.40829 0.77378 - 0.02072 - 0.29843 2.13390 - 1.03770 - 1.47772 0.69795 1.08587	-0.09919 -0.22655 0.01239 0.18668 0.17418 -0.28680 -0.25180 1.28300 0.21156 -1.38019 0.08462 -0.16414 -0.22598 1.30500 0.07238 1.24001 -0.41408 -0.08066 0.63954
23 MTBN_buoac C N N C C C C H H H C H H C H H H C H H H C H H H	0.25736 0.69984 1.17471 -0.14405 2.10018 -1.56315 0.24411 -0.12359 -2.02728 -1.59131 -2.23626 -1.08395 -2.99611 -2.15795 -1.52251 2.19806 2.69515 2.44933 3.17300 2.88019	0.51755 - 0.79638 1.41668 - 1.89999 - 0.77621 - 1.63268 - 2.82279 - 2.01910 - 0.27378 - 1.65131 - 2.40829 0.77378 - 0.02072 - 0.29843 2.13390 - 1.03770 - 1.47772 0.69795 1.08587 0.82440	-0.09919 -0.22655 0.01239 0.18668 0.17418 -0.28680 -0.25180 1.28300 0.21156 -1.38019 0.08462 -0.16414 -0.22598 1.30500 0.07238 1.24001 -0.41408 -0.08066 0.63954 -1.08295
23 MTBN_buoac C N N C C C H H H C H H C H H C H H H C H H H H H	0.25736 0.69984 1.17471 -0.14405 2.10018 -1.56315 0.24411 -0.12359 -2.02728 -1.59131 -2.23626 -1.08395 -2.99611 -2.15795 -1.52251 2.19806 2.69515 2.44933 3.17300 2.88019 -2.51887	0.51755 -0.79638 1.41668 -1.89999 -0.77621 -1.63268 -2.82279 -2.01910 -0.27378 -1.65131 -2.40829 0.77378 -0.02072 -0.29843 2.13390 -1.03770 -1.47772 0.69795 1.08587 0.82440 2.26405	-0.09919 -0.22655 0.01239 0.18668 0.17418 -0.28680 -0.25180 1.28300 0.21156 -1.38019 0.08462 -0.16414 -0.22598 1.30500 0.07238 1.24001 -0.41408 -0.08066 0.63954 -1.08295 -0.35630
23 MTBN_buoac C N N C C C H H H C H H H C H H H C H H H H	0.25736 0.69984 1.17471 -0.14405 2.10018 -1.56315 0.24411 -0.12359 -2.02728 -1.59131 -2.23626 -1.08395 -2.99611 -2.15795 -1.52251 2.19806 2.69515 2.44933 3.17300 2.88019 -2.51887 -1.56588	0.51755 -0.79638 1.41668 -1.89999 -0.77621 -1.63268 -2.82279 -2.01910 -0.27378 -1.65131 -2.40829 0.77378 -0.02072 -0.29843 2.13390 -1.03770 -1.47772 0.69795 1.08587 0.82440 2.26405 2.37432	-0.09919 -0.22655 0.01239 0.18668 0.17418 -0.28680 -0.25180 1.28300 0.21156 -1.38019 0.08462 -0.16414 -0.22598 1.30500 0.07238 1.24001 -0.41408 -0.08066 0.63954 -1.08295 -0.35630 1.14409
23 MTBN_buoac C N N C C C H H H C H H H C H H H H H H	0.25736 0.69984 1.17471 -0.14405 2.10018 -1.56315 0.24411 -0.12359 -2.02728 -1.59131 -2.23626 -1.08395 -2.99611 -2.15795 -1.52251 2.19806 2.69515 2.44933 3.17300 2.88019 -2.51887 -1.56588 -0.83408	0.51755 -0.79638 1.41668 -1.89999 -0.77621 -1.63268 -2.82279 -2.01910 -0.27378 -1.65131 -2.40829 0.77378 -0.02072 -0.29843 2.13390 -1.03770 -1.47772 0.69795 1.08587 0.82440 2.26405 2.37432 2.82841	-0.09919 -0.22655 0.01239 0.18668 0.17418 -0.28680 -0.25180 1.28300 0.21156 -1.38019 0.08462 -0.16414 -0.22598 1.30500 0.07238 1.24001 -0.41408 -0.08066 0.63954 -1.08295 -0.35630 1.14409 -0.40581
23 MTBN_buoac C N N C C C H H H C H H H C H H H H H H	0.25736 0.69984 1.17471 -0.14405 2.10018 -1.56315 0.24411 -0.12359 -2.02728 -1.59131 -2.23626 -1.08395 -2.99611 -2.15795 -1.52251 2.19806 2.69515 2.44933 3.17300 2.88019 -2.51887 -1.56588 -0.83408	0.51755 -0.79638 1.41668 -1.89999 -0.77621 -1.63268 -2.82279 -2.01910 -0.27378 -1.65131 -2.40829 0.77378 -0.02072 -0.29843 2.13390 -1.03770 -1.47772 0.69795 1.08587 0.82440 2.26405 2.37432 2.82841	-0.09919 -0.22655 0.01239 0.18668 0.17418 -0.28680 -0.25180 1.28300 0.21156 -1.38019 0.08462 -0.16414 -0.22598 1.30500 0.07238 1.24001 -0.41408 -0.08066 0.63954 -1.08295 -0.35630 1.14409 -0.40581
23 MTBN_buoac C N N C C C H H H C H H H C H H H H C H	0.25736 0.69984 1.17471 -0.14405 2.10018 -1.56315 0.24411 -0.12359 -2.02728 -1.59131 -2.23626 -1.08395 -2.99611 -2.15795 -1.52251 2.19806 2.69515 2.44933 3.17300 2.88019 -2.51887 -1.56588 -0.83408	0.51755 -0.79638 1.41668 -1.89999 -0.77621 -1.63268 -2.82279 -2.01910 -0.27378 -1.65131 -2.40829 0.77378 -0.02072 -0.29843 2.13390 -1.03770 -1.47772 0.69795 1.08587 0.82440 2.26405 2.37432 2.82841	-0.09919 -0.22655 0.01239 0.18668 0.17418 -0.28680 -0.25180 1.28300 0.21156 -1.38019 0.08462 -0.16414 -0.22598 1.30500 0.07238 1.24001 -0.41408 -0.08066 0.63954 -1.08295 -0.35630 1.14409 -0.40581
23 MTBN_buoac C N N C C C C H H H C C H H H C C H H H H	0.25736 0.69984 1.17471 -0.14405 2.10018 -1.56315 0.24411 -0.12359 -2.02728 -1.59131 -2.23626 -1.08395 -2.99611 -2.15795 -1.52251 2.19806 2.69515 2.44933 3.17300 2.88019 -2.51887 -1.56588 -0.83408	0.51755 -0.79638 1.41668 -1.89999 -0.77621 -1.63268 -2.82279 -2.01910 -0.27378 -1.65131 -2.40829 0.77378 -0.02072 -0.29843 2.13390 -1.03770 -1.47772 0.69795 1.08587 0.82440 2.26405 2.37432 2.82841	-0.09919 -0.22655 0.01239 0.18668 0.17418 -0.28680 -0.25180 1.28300 0.21156 -1.38019 0.08462 -0.16414 -0.22598 1.30500 0.07238 1.24001 -0.41408 -0.63954 -1.08295 -0.35630 1.14409 -0.40581

Ν	0.69958	-0.79534	-0.23102
Ν	1,17699	1,41692	0.01135
C	-0.14568	-1 89914	0 18656
C	2 09875	-0.77650	0 17799
C	-1 56515	-1 63291	-0.28495
н	0.24325	-2 82237	-0 24949
11	0.27323	2.02237	1 20256
П	-0.12256	-2.01189	1.28250
L	-2.02/85	-0.2/318	0.21098
H	-1.59804	-1.656/8	-1.3/835
Н	-2.23685	-2.40653	0.09239
N	-1.08282	0.77492	-0.16915
Н	-2.99651	-0.01882	-0.22499
Н	-2.15303	-0.29418	1.30425
С	-1.52145	2.13471	0.07566
Н	2.18818	-1.03339	1.24507
Н	2.69554	-1.48161	-0.40346
С	2.45199	0.69434	-0.08080
Н	3.17758	1.08120	0.63799
Н	2.88325	0.81645	-1.08363
Н	-2.53427	2.25296	-0.31482
Н	-1.52733	2.38103	1.14667
Н	-0.86069	2.83395	-0.43469
20			
TBN_buoac			
С	-0.32933	-0.72038	-0.07056
Ν	-0.31641	0.65780	-0.23554
Ν	-1.48457	-1.27418	0.05355
С	0.84913	1.43201	0.14926
С	-1.64836	1.10808	0.14652
С	2.10666	0.69308	-0.28740
Н	0.79279	2.41278	-0.32971
Н	0.86425	1.59618	1.23964
С	2.09690	-0.72414	0.26715
Н	2.14671	0.65800	-1.38010
Н	2,99226	1.22323	0.06922
N	0.85899	-1 39136	-0.12039
Н	2 93375	-1 29787	-0.13517
н	2,20662	-0.69305	1 36047
и П	0.77935	2 26767	0 1 1 0 4 2
11	165707	-2.30707	1 20120
П	-1.05/0/	1.42302	1.20129
П	-1.96204	1.94297	-0.4/20/
L	-2.45859	-0.18242	-0.06461
H	-3.26356	-0.29189	0.66554
Н	-2.91510	-0.19163	-1.06343
20			
TBN meen			
С.	-0.32825	-0.72009	-0.07018
N	-0.31682	0.65591	-0.23840
N	-1 48652	-1 27465	0.05288
C	0.84075	1 / 2122	0.05200
C	-164706	1 10605	0.14907
C	-1.04/90 2.10750	1.10000	0.13007
с II	2.10/59	0.09392	-0.20/39
п	0.79119	2.41259	-0.32/82
Н	0.86183	1.59070	1.23922
ւ 	2.09811	-0./2296	0.26617
H	2.15121	0.66150	-1.38052
Н	2.99175	1.22374	0.07234
N	0.85816	-1.39242	-0.12029
Н	2.93371	-1.29824	-0.13567

Н	2.20492	-0.69260	1.35893
Н	0.78133	-2.36643	0.13215
Н	-1.65251	1.41701	1.20647
Н	-1.98216	1.94602	-0.46274
С	-2.45988	-0.17967	-0.06668
Н	-3.26785	-0.28768	0.66028
Н	-2 91332	-0 18471	-1.06715
	2.71002	0.10171	1100710
20			
TBNa buoac			
C	0 21525	-0 72312	-0.02933
N	0.25115	0.65168	0.02755
N	1 5 2 5 8 7	-1 16215	-0.11169
C C	0.04674	1.10215	0.11107
C	1 50027	1.40451	0.20302
C	2 1 2 2 4	1.14191	0.17293
с u	-2.12303	0.02709	0.37733
п	-0.00392	2.39303	0.25412
П	-1.07025	1.54556	-1.20000
	-2.11119	-0.81/88	-0.12954
П	-2.04085	0.03788	1.46896
H	-3.06591	1.11276	0.11012
N	-0.81095	-1.48324	-0.08052
Н	-2.82384	-1.41064	0.45251
Н	-2.47511	-0.83877	-1.16636
H	1.72815	1.38064	-1.23785
Н	1.81457	2.03053	0.41992
С	2.42826	-0.07121	0.23436
Н	3.36545	-0.13657	-0.31925
Н	2.64830	-0.04181	1.30912
Н	1.71317	-2.08891	0.23835
20			
TBN*_mecn			
С	0.21728	-0.72213	-0.02924
N	0.25050	0.64952	0.08978
Ν	1.52738	-1.16402	-0.11219
С	-0.94870	1.40439	-0.20084
С	1.58949	1.14286	-0.17407
С	-2.12415	0.62617	0.37981
Н	-0.86304	2.39163	0.25986
Н	-1.07321	1.54812	-1.28476
С	-2.11175	-0.81648	-0.13289
Н	-2.04136	0.63280	1.47161
Н	-3.06658	1.11121	0.11404
Ν	-0.81069	-1.48510	-0.08021
Н	-2.82874	-1.41042	0.44276
Н	-2.47093	-0.82994	-1.17144
Н	1.72578	1.38270	-1.23852
Н	1.81158	2.03128	0.41940
С	2.42900	-0.06861	0.23319
Н	3.36618	-0.13373	-0.31970
Н	2.64765	-0.04150	1.30763
Н	1.71527	-2.08218	0.26178

3.7.2 Precomplexes

24			
DBNCO ₂ _b	uoac		
С	0.31876	-0.33139	-0.01639

Ν	1.41927	0.41354	-0.07534
С	0.70157	-1.77881	0.13125
С	1.43600	1.86940	-0.05399
С	2.65295	-0.36035	0.05130
С	0.08701	2.37626	0.42626
Н	2.24100	2.18583	0.61335
Н	1.66526	2.23816	-1.05873
С	-1.02522	1.62458	-0.28516
Н	0.00045	3.44529	0.22719
Н	-0.00452	2.22572	1.50585
Ν	-0.89118	0.18030	-0.07748
Н	-2.00810	1.90277	0.08373
Н	-1.00404	1.83196	-1.36069
Н	3.39507	0.00770	-0.65956
Н	3.05215	-0.24071	1.06472
С	2.19066	-1.78664	-0.23570
Н	2.75623	-2.52558	0.33033
Н	2.30754	-2.00664	-1.29899
Н	0.52070	-2.07066	1.16875
Н	0.07939	-2.42035	-0.48400
С	-2.20197	-0.65834	0.01642
0	-3.18903	0.02758	-0.20449
0	-2.01801	-1.83491	0.29622

24			
DBNCO _{2_1}	mecn		
С	0.43448	-0.30570	-0.13566
Ν	1.70809	0.18257	-0.08265
С	0.50086	-1.80188	0.06570
С	1.98869	1.60148	0.03866
С	2.70072	-0.83573	0.21204
С	0.70326	2.34026	0.39759
Н	2.74706	1.74548	0.81548
Н	2.40496	1.98187	-0.90205
С	-0.45723	1.80884	-0.44392
Н	0.83711	3.41351	0.24435
Н	0.47398	2.18045	1.45640
Ν	-0.64140	0.36768	-0.30686
Н	-1.38967	2.30019	-0.15606
Н	-0.28376	2.05641	-1.50122
Н	3.61151	-0.66937	-0.36975
Н	2.97024	-0.81768	1.27795
С	1.97933	-2.13182	-0.17118
Н	2.32784	-2.98673	0.40869
Н	2.14853	-2.34471	-1.22976
Н	0.20283	-2.02434	1.09541
Н	-0.18578	-2.32508	-0.59802
С	-3.15169	-0.45899	0.10035
0	-3.54008	0.63206	0.11254
0	-2.90018	-1.58962	0.11292

26 $MTBN \text{---}CO_2_buoac$

С	0.42105	0.09722	-0.39527
Ν	1.45028	1.01377	-0.20732
Ν	-0.74727	0.59571	-0.61679
С	2.62545	0.65268	0.56069
С	0.79459	2.29102	0.04192
С	3.05133	-0.75268	0.16934
Η	3.41973	1.37244	0.34756
Η	2.41508	0.70041	1.64222
С	1.88341	-1.71174	0.33225
Η	3.38492	-0.75501	-0.87244
Η	3.88449	-1.08079	0.79440
Ν	0.71057	-1.23796	-0.39465
Η	2.14373	-2.69668	-0.06306
Η	1.64690	-1.83878	1.40043
С	-0.39816	-2.16537	-0.48452
Η	0.69098	2.46327	1.12496
Η	1.35615	3.12043	-0.39251
С	-0.56849	2.04979	-0.62470
Η	-1.38393	2.54805	-0.09539
Η	-0.56667	2.42342	-1.65719
С	-3.22549	-0.19184	0.45046
0	-3.65470	-0.55090	-0.56198
0	-2.88747	0.14597	1.50485
Η	-0.89742	-2.30834	0.48488
Η	-1.13005	-1.79171	-1.19834
Н	-0.02378	-3.13230	-0.82818

MTBN---CO2_mecn

С	0.42445	0.09824	-0.45163
Ν	1.44382	1.01051	-0.20343
Ν	-0.73062	0.60322	-0.73401
С	2.57236	0.64024	0.63140
С	0.77594	2.28592	0.02920
С	3.01712	-0.76316	0.25678
Н	3.37783	1.36080	0.47092
Н	2.29534	0.68077	1.69725
С	1.83934	-1.71859	0.34747
Н	3.41305	-0.76175	-0.76323
Н	3.81014	-1.09731	0.92868
Ν	0.70878	-1.23790	-0.44417
Н	2.11691	-2.70321	-0.03576
Н	1.53913	-1.84611	1.39872
С	-0.40169	-2.16117	-0.57008
Н	0.61164	2.43857	1.10723
Н	1.36206	3.12141	-0.35781
С	-0.54614	2.05846	-0.71667
Н	-1.38881	2.55501	-0.23028
Н	-0.48250	2.44386	-1.74320
С	-3.18327	-0.18719	0.52467
0	-3.64551	-0.62352	-0.44183
0	-2.79652	0.23327	1.53111
Н	-0.94076	-2.28840	0.37975

Н	-1.10300	-1.79521	-1.31760
Н	-0.01727	-3.13377	-0.88443
23			
TBNC	:O ₂ _buoac		
С	0.29911	0.03963	-0.22625
Ν	1.40848	0.86856	-0.17997
Ν	-0.85014	0.62289	-0.22757
С	2.66778	0.37983	0.35066
С	0.90433	2.17763	0.21569
С	2.90479	-1.03757	-0.15298
Н	3.46961	1.04490	0.02040
Н	2.65680	0.39508	1.45307
С	1.71008	-1.91870	0.18344
Н	3.05122	-1.01801	-1.23692
Н	3.80682	-1.44848	0.30510
Ν	0.49021	-1.30585	-0.32984
Н	1.81835	-2.90172	-0.27823
Н	1.65298	-2.06404	1.27135
Н	-0.36142	-1.83964	-0.24288
Н	1.00121	2.31212	1.30447
Н	1.44448	2.98309	-0.28564
С	-0.56883	2.06149	-0.21325
Н	-1.24318	2.58722	0.46598
Н	-0.71371	2.48418	-1.21619
C	-3.20490	-0.61450	0.11342
0	-3 80179	0 37416	0 16100
0	-2 72285	-1 66926	0.08610
Ū	217 2200	1.00720	0.00010
23			
TBNC	O_2 mecn		
С	0.30844	0.03450	-0.20233
N	1.41786	0.86334	-0.19244
N	-0.84212	0.61918	-0.18331
C	2.68923	0.37859	0.31836
C	0.92320	2.17485	0.21116
C	2.91584	-1.04332	-0.17572
Н	3.48308	1.04159	-0.03365
Н	2.69686	0.40424	1.41973
C	1 72844	-1 91961	0 19493
н	3 04271	-1.03627	-1 26258
н	3 82583	-1 44964	0.27001
N	0.49603	-1 31188	-0.30099
н	1 82512	-2 90834	-0.25632
и П	1.601/10	-2.90034	1 29/99
и П	0.25066	1 04702	0 17600
и П	-0.33000	-1.04703	-0.17000 1 20715
11	1.04237	2.30930	1.29713
II C	1.43380	2.7/0/3 2.05005	-0.30214
с II	-0.55/25	2.03903	-0.1000/
п	-1.21558	2.37328	0.30159
п С	-0./2084	2.4/491	-1.19010
L O	-3.25065	-0.60///	0.09653
U	-3.82529	0.39522	0.11912

0	-2.77724	-1.66571	0.08702
23			
TBN*CO ₂ b	uoac		
C	0.40661	-0.28748	-0.15666
N	1.70057	0.08246	0.13645
N	0.38622	-1.66281	-0.28206
С	2.09312	1.46079	-0.05226
С	2.59568	-1.04414	-0.04307
С	0.93030	2.33127	0.41409
Н	2.99152	1.65592	0.53911
Н	2.33396	1.66430	-1.10688
С	-0.36580	1.91105	-0.28479
Н	0.82102	2.21428	1.49711
Н	1.14279	3.38409	0.21230
Ν	-0.61262	0.47244	-0.30825
Н	-1.21707	2.39560	0.20229
Н	-0.35537	2.28216	-1.31905
С	-3.10153	-0.39166	0.08876
Н	3.00360	-1.07587	-1.06398
Н	3.42396	-1.01288	0.66727
С	1.64245	-2.21525	0.20839
Н	1.92684	-3.11195	-0.34284
Н	1.59871	-2.45155	1.27911
0	-3.53508	0.68061	0.07959
0	-2.80362	-1.51228	0.12443
Н	-0.48458	-2.12292	-0.06633
22			
23 TDN* CO -			
I BN*CU ₂ _I		0 20272	0 1 5 7 0 5
	0.42263	-0.29272	-0.15/05
IN N	1./0954	0.09281	0.13683
N	0.41785	-1.66882	-0.29354
L	2.08450	1.47797	-0.04588
1	167172	1 0 20 4	0.06.202

Ν	0.41785	-1.66882	-0.29354
С	2.08450	1.47797	-0.04588
С	2.62123	-1.02054	-0.05302
С	0.91231	2.33061	0.42818
Н	2.98235	1.68005	0.54324
Н	2.31860	1.68836	-1.10020
С	-0.37847	1.89816	-0.27210
Н	0.80616	2.20665	1.51089
Н	1.11069	3.38692	0.23124
Ν	-0.60838	0.45506	-0.30565
Н	-1.23551	2.36963	0.21825
Н	-0.37129	2.27702	-1.30366
С	-3.13787	-0.40304	0.08978
Н	3.02556	-1.03707	-1.07529
Н	3.45087	-0.98148	0.65466
С	1.68563	-2.20536	0.19327
Н	1.98159	-3.09542	-0.36195
Н	1.64378	-2.44677	1.26231
0	-3.55860	0.67199	0.01468
0	-2.83712	-1.51837	0.18621
Н	-0.43990	-2.14062	-0.04925

26				
TBN-H ₂ O-	CO ₂ _buoac			
С	0.94096	0.33832	-0.07106	
Ν	2.27248	0.01512	-0.22608	
Ν	0.66352	1.60413	-0.07049	
С	2.77688	-1.26551	0.23262	
С	3.01639	1.24607	0.00784	
C	1.76486	-2.34980	-0.11587	
C	0.39431	-1.99276	0.44386	
N	0.02139	-0.65265	0.01459	
C	1 93491	2 29853	-0 29420	
Н	3 73343	-1 46118	-0.25798	
н	2 95821	-1 24539	1 31941	
н	1 70093	-2 44762	-1 20347	
н	2 09202	-3 30779	0 29319	
н	-0.36043	-2 69065	0.2751	
и ц	0.41100	-2.07005	1 54030	
н ц	0.41190	-2.00330	0.10205	
п u	2 25406	1 20747	1 05442	
11	2 00702	1.25/4/	1.03442	
п	3.00/03	1.51042	-0.04509	
п	2.02226	3.17881	0.34578	
п	2.00527	2.03559	-1.33651	
п	-1.12562	1.78499	0.13908	
0	-2.05354	1.55056	0.37235	
L O	-3.93023	-0.310/5	-0.22541	
0	-4.69542	0.24342	0.44073	
0	-3.21566	-0.92053	-0.90164	
Н	-2.13220	1.79359	1.29660	
26				
26				
TBN-H ₂ O-	CO ₂ mecn			
C	0.57577	0.13832	-0.40392	
N	1.67136	0.88739	-0.03821	
Ν	-0.54590	0.78196	-0.49317	
С	2.82689	0.25659	0.57798	
С	1.14463	2.14290	0.48636	
С	3.10039	-1.06926	-0.11846	
С	1.84619	-1.93061	-0.11575	
Ν	0.73326	-1.17937	-0.69270	
С	-0.23351	2.18452	-0.19214	
H	3.68286	0.92835	0.48231	
Н	2.64668	0.09402	1.65181	
Н	3.41559	-0.88219	-1.14940	
Н	3.90802	-1.59577	0.39333	
Н	1.99584	-2.82947	-0.71550	
Н	1.61242	-2.24369	0.91012	
Н	-0.13808	-1.67780	-0.79816	
Н	1.05811	2.08929	1.58175	
Н	1.78633	2.98577	0.22491	
Н	-0.99840	2.62907	0.44743	
Н	-0 19112	2.77063	-1.11929	

Н -2.05288 0.25806 -1.38579

0	-2.90692	-0.04663	-1.76355
С	-2.64975	-0.73981	0.98440
0	-3.21162	0.23223	1.26241
0	-2.11552	-1.74580	0.77865
Н	-3.52764	0.62969	-1.48585

3.7.3 Transition states

24

TS-DBN_buoac				
С	0.34905	-0.31218	-0.04214	
Ν	1.56699	0.27445	-0.07095	
С	0.54174	-1.80938	-0.01503	
С	1.73434	1.70855	-0.18211	
С	2.66382	-0.67359	-0.18020	
С	0.50152	2.38031	0.41068	
Н	2.63848	1.99610	0.36105	
Н	1.86883	1.99668	-1.23269	
С	-0.76394	1.75853	-0.17208	
Н	0.50699	2.24706	1.49701	
Н	0.52540	3.45249	0.20552	
Ν	-0.78280	0.30395	-0.06320	
Н	-1.64994	2.14010	0.33772	
Н	-0.86419	2.03722	-1.22896	
С	-2.64616	-0.55428	-0.00258	
Н	3.00361	-0.75255	-1.22120	
Н	3.50892	-0.34754	0.43095	
С	2.02979	-1.97515	0.31777	
Н	2.47229	-2.85641	-0.14627	
Н	2.16204	-2.05476	1.39942	
0	-3.33909	0.39432	0.08639	
0	-2.44768	-1.71353	-0.08075	
Н	-0.12984	-2.28877	0.69299	
Н	0.30133	-2.20154	-1.00750	
<i>~</i> .				

24

TS-DBN_mecn				
0.36132	-0.31290	-0.05317		
1.57844	0.27224	-0.10810		
0.55211	-1.79529	0.15861		
1.76291	1.71341	-0.06104		
2.67710	-0.65899	0.10664		
0.46929	2.36966	0.40438		
2.58223	1.93410	0.62891		
2.05322	2.08097	-1.05155		
-0.71845	1.74490	-0.32208		
0.51142	3.44453	0.21797		
0.34923	2.21939	1.48210		
-0.77120	0.29842	-0.14520		
-1.65815	2.16093	0.04495		
-0.66023	1.98014	-1.39347		
3.50819	-0.42990	-0.56440		
3.03889	-0.58479	1.14033		
	ecn 0.36132 1.57844 0.55211 1.76291 2.67710 0.46929 2.58223 2.05322 -0.71845 0.51142 0.34923 -0.77120 -1.65815 -0.66023 3.50819 3.03889	ecn0.36132-0.312901.578440.272240.55211-1.795291.762911.713412.67710-0.658990.469292.369662.582231.934102.053222.08097-0.718451.744900.511423.444530.349232.21939-0.771200.29842-1.658152.16093-0.660231.980143.03889-0.58479		

С	2.03093	-2.01549	-0.18241
Н	2.48507	-2.82056	0.39483
Н	2.13512	-2.25258	-1.24396
Н	0.34270	-2.01928	1.20922
Н	-0.13501	-2.38151	-0.44692
С	-2.69737	-0.55053	0.03265
0	-3.36143	0.41818	-0.00860
0	-2.49237	-1.70501	0.11529

TS-MTBN_buoac

С	0.23047	0.07564	-0.32098
Ν	1.00326	1.17949	-0.07890
Ν	-1.03323	0.34735	-0.58314
С	2.28884	1.10067	0.58206
С	0.10556	2.31225	0.09809
С	2.99507	-0.16341	0.11881
Н	2.87100	1.98755	0.32170
Н	2.15834	1.09321	1.67443
С	2.08568	-1.36948	0.29813
Н	3.26390	-0.06275	-0.93657
Н	3.91342	-0.30972	0.69031
Ν	0.77892	-1.14763	-0.31713
Н	2.52739	-2.24712	-0.17767
Н	1.95697	-1.60166	1.36282
С	0.07040	-2.31095	-0.81623
Н	-0.10373	2.47720	1.16527
Н	0.53485	3.22216	-0.32419
С	-1.12382	1.80950	-0.66570
Н	-2.06566	2.15594	-0.24305
Н	-1.08079	2.13171	-1.71309
С	-2.50578	-0.47941	0.43441
0	-3.42928	0.21709	0.18527
0	-2.04229	-1.40839	1.00490
Н	-0.25611	-2.96093	-0.00170
Н	-0.80505	-1.98962	-1.37591
Н	0.73679	-2.86883	-1.48101

26

TS-MTBN_mecn

С	0.23738	0.08091	-0.34450
Ν	1.00922	1.18172	-0.08437
Ν	-1.02378	0.35305	-0.62046
С	2.28042	1.09005	0.60566
С	0.10649	2.30856	0.10839
С	2.99555	-0.16602	0.13592
Н	2.86751	1.98139	0.37453
Н	2.12305	1.06208	1.69376
С	2.08546	-1.37518	0.28353
Н	3.28318	-0.05010	-0.91303
Н	3.90324	-0.32048	0.72181
Ν	0.78413	-1.14378	-0.34264
Н	2.53237	-2.24453	-0.20216

Н	1.94399	-1.62341	1.34286
С	0.06530	-2.30721	-0.82597
Н	-0.11323	2.44798	1.17698
Н	0.53664	3.22900	-0.28886
С	-1.11360	1.81803	-0.67675
Н	-2.05869	2.16071	-0.25665
Н	-1.05970	2.16185	-1.71725
С	-2.52345	-0.48645	0.45925
0	-3.44757	0.18720	0.16687
0	-2.02750	-1.37523	1.05823
Н	-0.26577	-2.94375	-0.00187
Н	-0.80714	-1.98729	-1.39174
Н	0.72681	-2.88236	-1.48018

TS-TBN_buoac

С	0.21957	-0.03347	-0.11016
Ν	1.20138	0.92483	-0.17125
Ν	-0.99343	0.42855	-0.05806
С	2.56375	0.61980	0.22398
С	0.56971	2.19031	0.18567
С	2.92194	-0.77430	-0.27526
Н	3.22951	1.36762	-0.21297
Н	2.67058	0.67575	1.31853
С	1.89296	-1.78924	0.20391
Н	2.95095	-0.77043	-1.36869
Н	3.91164	-1.05535	0.08967
Ν	0.55262	-1.34080	-0.15431
Н	2.06445	-2.75805	-0.26761
Н	1.97930	-1.92406	1.29001
Н	-0.22127	-1.97632	-0.02635
Н	0.71792	2.40261	1.25473
Н	0.97952	3.01647	-0.39757
С	-0.90322	1.88623	-0.13616
Н	-1.59252	2.35836	0.56527
Н	-1.16223	2.22918	-1.14539
С	-2.77629	-0.64524	0.03691
0	-3.57331	0.21374	0.00641
0	-2.39948	-1.76104	0.09514

23

TS-TBN_mecn

С	0.23018	-0.03234	-0.18417
Ν	1.20946	0.93005	-0.16982
Ν	-0.98824	0.42219	-0.18720
С	2.54799	0.61890	0.30230
С	0.55372	2.18098	0.19906
С	2.94201	-0.76326	-0.20109
Н	3.23558	1.37834	-0.07620
Н	2.58314	0.65152	1.40175
С	1.88913	-1.78860	0.19400
Н	3.04150	-0.73932	-1.29034
Н	3.90698	-1.04856	0.22163

Ν	0.57137	-1.33815	-0.24634
Н	2.09327	-2.75001	-0.27911
Н	1.90239	-1.93715	1.28104
Н	-0.20258	-1.97903	-0.14879
Н	0.64786	2.35391	1.28087
Н	0.98832	3.02868	-0.33255
С	-0.89846	1.88348	-0.20749
Н	-1.62437	2.32837	0.47495
Н	-1.10692	2.26375	-1.21534
С	-2.79004	-0.65121	0.08059
0	-3.56567	0.22516	0.13352
0	-2.41688	-1.76726	0.09227

TS-TBN*_bu	oac		
С	0.35134	-0.30820	-0.09410
Ν	1.60388	0.21125	0.07524
Ν	0.46133	-1.66957	-0.18714
С	1.83746	1.62691	-0.10698
С	2.60805	-0.81873	-0.12302
С	0.61162	2.36819	0.41673
Н	2.73340	1.90778	0.45211
Н	2.01339	1.86257	-1.16650
С	-0.66074	1.81019	-0.22057
Н	0.56348	2.24741	1.50344
Н	0.70038	3.43556	0.20217
Ν	-0.75272	0.35597	-0.16835
Н	-1.54177	2.21972	0.27852
Н	-0.71810	2.13428	-1.26821
С	-2.67050	-0.50541	0.03362
Н	2.96730	-0.82898	-1.16125
Н	3.45850	-0.67550	0.54533
С	1.80385	-2.08086	0.20361
Н	2.13531	-2.94793	-0.36734
Н	1.86238	-2.31169	1.27405
0	-3.35011	0.44864	-0.01149
0	-2.43715	-1.65616	0.13176
Н	-0.35001	-2.21901	0.05158

23

TS-TBN*_mecn

	-		
С	0.35879	-0.30902	-0.07849
Ν	1.61674	0.19995	0.07250
Ν	0.45548	-1.67485	-0.17160
С	1.85891	1.61263	-0.12721
С	2.61031	-0.83868	-0.14030
С	0.65017	2.36739	0.41523
Н	2.76870	1.88958	0.41034
Н	2.01367	1.83649	-1.19222
С	-0.63834	1.81649	-0.19543
Н	0.62184	2.25371	1.50358
Н	0.74340	3.43248	0.19189
Ν	-0.74276	0.36152	-0.14207

Н	-1.50535	2.23566	0.32107
Н	-0.71229	2.14196	-1.24178
С	-2.71893	-0.49505	0.02447
Н	2.94818	-0.85510	-1.18534
Н	3.47439	-0.69834	0.51033
С	1.80268	-2.09128	0.20746
Н	2.12138	-2.96604	-0.35853
Н	1.87093	-2.31150	1.27914
0	-3.36766	0.47773	-0.03036
0	-2.48807	-1.64344	0.11769
Н	-0.34666	-2.21449	0.11672

$TS\text{-}TBN\text{-}H_2O_buoac$

С	0.70462	0.18675	-0.14196
Ν	2.00579	0.59325	-0.04639
Ν	-0.16708	1.15999	-0.12563
С	3.05117	-0.32546	0.36306
С	1.99281	1.98982	0.36950
С	2.78228	-1.68519	-0.26926
С	1.37142	-2.15385	0.05992
Ν	0.40603	-1.11455	-0.27942
С	0.58636	2.41577	-0.07911
Н	4.01241	0.07151	0.02930
Н	3.08460	-0.40850	1.45981
Н	2.89998	-1.60818	-1.35395
Н	3.50569	-2.41462	0.09946
Н	1.12247	-3.04768	-0.51377
Н	1.29967	-2.40821	1.12490
Н	-0.58335	-1.34181	-0.25108
Н	2.11459	2.06568	1.45947
Н	2.79041	2.55504	-0.11488
Н	0.12714	3.12517	0.61115
Н	0.61747	2.87806	-1.07323
Н	-1.51461	1.02912	-0.42652
0	-2.59402	0.89002	-0.66399
С	-3.28672	-0.54695	0.16614
0	-4.32925	-0.20672	0.61292
0	-2.49035	-1.42109	0.00750
Н	-3.09227	1.65053	-0.35170

26

TS-TBN-H₂O_mecn

С	0.71244	0.18229	-0.15633
Ν	2.00735	0.60638	-0.05481
Ν	-0.17585	1.14009	-0.13946
С	3.06053	-0.29815	0.37240
С	1.96890	1.99864	0.37825
С	2.81692	-1.66527	-0.25282
С	1.40865	-2.14845	0.06372
Ν	0.43439	-1.12524	-0.30719
С	0.56053	2.40752	-0.07673
Н	4.01998	0.11014	0.04816

3.07908	-0.37307	1.46953
2.94799	-1.59726	-1.33680
3.54397	-2.38217	0.13251
1.17865	-3.05400	-0.49912
1.32572	-2.38444	1.13173
-0.54986	-1.36577	-0.26500
2.07992	2.06034	1.46991
2.76183	2.58196	-0.09146
0.08577	3.10480	0.61511
0.59204	2.87840	-1.06688
-1.55078	1.00925	-0.44707
-2.61809	0.88895	-0.67472
-3.30051	-0.56246	0.17512
-4.33332	-0.21934	0.64037
-2.50471	-1.42976	-0.00644
-3.09135	1.65968	-0.34580
	3.07908 2.94799 3.54397 1.17865 1.32572 -0.54986 2.07992 2.76183 0.08577 0.59204 -1.55078 -2.61809 -3.30051 -4.33332 -2.50471 -3.09135	3.07908-0.373072.94799-1.597263.54397-2.382171.17865-3.054001.32572-2.38444-0.54986-1.365772.079922.060342.761832.581960.085773.104800.592042.87840-1.550781.00925-2.618090.88895-3.30051-0.56246-4.3332-0.21934-2.50471-1.42976-3.091351.65968

3.7.4 Products

24			
DBN-CO ₂ _b	uoac		
С	-0.31691	-0.33041	0.03303
Ν	-1.42212	0.40818	0.09470
С	-0.69238	-1.78708	-0.01452
С	-1.43048	1.85911	0.17517
С	-2.64562	-0.38410	0.19928
С	-0.13871	2.37877	-0.43180
Н	-2.30342	2.22230	-0.37091
Н	-1.53056	2.16837	1.22131
С	1.04551	1.64070	0.16645
Н	-0.15775	2.23158	-1.51557
Н	-0.04025	3.44807	-0.23956
Ν	0.89216	0.18669	0.04287
Н	1.97619	1.89663	-0.33211
Н	1.15985	1.89078	1.22660
С	2.20560	-0.65843	0.01092
Н	-2.98453	-0.39931	1.24101
Н	-3.42901	0.06454	-0.41384
С	-2.20000	-1.75853	-0.29420
Н	-2.73102	-2.56888	0.20346
Н	-2.37879	-1.84005	-1.36843
0	3.19568	0.05567	-0.04094
0	2.01966	-1.86633	0.05543
Н	-0.10557	-2.32469	-0.75209
Н	-0.45033	-2.22828	0.95533
24			
DBN-CO ₂ _m	necn		

С	-0.31866	-0.33306	0.03181
Ν	-1.41195	0.41268	0.10125
С	-0.70475	-1.78642	-0.01922
С	-1.41313	1.86457	0.18411
С	-2.64507	-0.36834	0.19955

С	-0.12524	2.37716	-0.43347
Н	-2.28971	2.22932	-0.35367
Н	-1.50194	2.16885	1.23200
С	1.05953	1.63582	0.15776
Н	-0.15347	2.22885	-1.51684
Н	-0.01951	3.44545	-0.24064
Ν	0.89966	0.17972	0.03598
Н	1.98527	1.89055	-0.34961
Н	1.17853	1.88616	1.21703
С	2.18149	-0.65878	0.01299
Н	-2.98288	-0.38115	1.24091
Н	-3.41969	0.09340	-0.41403
C	-2.21215	-1.74461	-0.29747
Н	-2 74854	-2 55092	0 20071
н	-2 39170	-1 82159	-1 37180
0	3 19244	0.03562	-0.03970
0	2 00646	-1 87286	0.05370
н	-0 12552	-2 32580	-0 76147
н	-0.12332	-2.32300	0.95103
26	-0.40020	-2.22997	0.93103
ZU MTRN_CO	- huong		
C	0 18693	0.03815	-0 14929
N	0.10095	1 15028	0.14929
N	-1 11280	0 32791	-0.36453
n C	2 3 3 1 9 3	1 16871	0.36965
C C	0.05417	2 21774	0.11420
C C	2 07110	0 12/12	0.11427
с u	2.97119	2 02425	-0.00403
н ц	2.79030	1 20152	1 45247
n C	2.44030	1.30133	0.34400
с u	2.11020	-1.31240	1 1 7 2 6 2
11	2.07237	-0.13002	-1.1/303
П N	5.90050	-0.22554	0.34030
	0.74260	-1.10029	-0.16302
п	2.50866	-2.24351	-0.05796
H C	2.08540	-1.40349	1.43506
L H	0.09068	-2.34618	-0.71054
H	-0.10006	2.60867	1.16023
H	0.49290	3.15541	-0.42878
L H	-1.216/6	1./830/	-0.54/42
H	-2.13506	2.13666	-0.08866
H	-1.2381/	2.02579	-1.613/6
L	-2.30644	-0.41497	0.26852
0	-3.36325	0.16393	0.04979
0	-1.99800	-1.42659	0.88898
H	-0.23554	-3.01827	0.08230
H	-0.78023	-2.05359	-1.29065
Н	0.80630	-2.85071	-1.36550
26			
MTBN-CO	2_mecn	0.00.001	0.46.55.
C	0.18714	0.03431	-0.12621
N	0.91659	1.14246	0.06175
N	-1.11806	0.32872	-0.34932
C .	2.33867	1.16857	0.34880

С	0.05514	2.31723	0.12149
С	2.96611	-0.13653	-0.11428
Н	2.77928	2.02138	-0.17134
Н	2.48679	1.31235	1.42512
С	2.11618	-1.31173	0.34278
Н	3.04080	-0.14882	-1.20510
Н	3.97246	-0.22533	0.29688
Ν	0.73817	-1.17046	-0.14238
Н	2.50692	-2.24690	-0.05569
Н	2.10863	-1.38706	1.43490
С	0.08958	-2.34410	-0.70749
Н	-0.10019	2.62508	1.16152
Н	0.50431	3.14115	-0.43297
С	-1.21724	1.78544	-0.53891
Н	-2.13111	2.14756	-0.07820
Н	-1.23748	2.02425	-1.60569
С	-2.29176	-0.40428	0.25628
0	-3.36573	0.14224	0.00413
0	-2.00229	-1.40567	0.91130
Н	-0.23424	-3.02844	0.07630
Н	-0.77929	-2.04652	-1.28869
Н	0.80748	-2.83975	-1.36562
23 TBN-CO ₂ _b	uoac		
С	0.17151	-0.09428	0.01044
N	0.99531	0.96214	-0.05749
N	-1.11315	0.27897	0.03611
С	2.42564	0.82526	0.14763
С	0.23693	2.18914	0.16636
С	2.86892	-0.52862	-0.39878
Н	2.92718	1.63697	-0.38235
Н	2.66493	0.91607	1.21507
С	2.02030	-1.65581	0.17975
Н	2.77627	-0.52374	-1.48826
Н	3.91760	-0.69819	-0.15050
Ν	0.60376	-1.34015	0.03840
Н	2.21203	-2.58930	-0.34952
Н	2.25794	-1.81062	1.23749
Н	-0.15213	-2.02649	0.08890
Н	0.36320	2.52694	1.20152
Н	0.57031	2.97779	-0.50846
С	-1.20203	1.73142	-0.11818
Н	-1.92559	2.14451	0.58079
Н	-1.51419	1.98141	-1.13551
С	-2.29158	-0.62529	-0.00784
0	-3.35707	-0.02975	-0.10029
0	-2.00257	-1.83188	0.06220
23			

TBN-CO₂_mecn C 0.17378

С	0.17378	-0.09846	0.01807
N	0.98969	0.95848	-0.04873

Ν	-1.11759	0.27385	0.04221
С	2.42504	0.83082	0.13734
С	0.23093	2.18715	0.16520
С	2.86922	-0.52281	-0.40674
Н	2.91187	1.64379	-0.40355
Н	2.67379	0.92868	1.20101
С	2.03084	-1.64977	0.18501
Н	2.76872	-0.52465	-1.49560
Н	3.91981	-0.68638	-0.16365
Ν	0.61018	-1.34214	0.04735
Н	2.22281	-2.58683	-0.33720
Н	2.27211	-1.79198	1.24311
Н	-0.13273	-2.03878	0.09743
Н	0.35958	2.53201	1.19687
Н	0.56391	2.96878	-0.51727
С	-1.20736	1.72796	-0.11425
Н	-1.92583	2.14365	0.58839
Н	-1.52092	1.97614	-1.13145
С	-2.28264	-0.62053	-0.01076
0	-3.35748	-0.03180	-0.10495
0	-2.00852	-1.83343	0.05407
23			
TBN*-CO2	buoac		
С	0.32468	-0.33580	-0.03753
Ν	1.46103	0.38060	0.02662
Ν	0.59850	-1.64183	-0.08504
С	1.50032	1.82174	-0.11877
С	2.61172	-0.49562	-0.16647
С	0.19182	2.38367	0.41738
Н	2.35345	2.19939	0.44852
Н	1.64391	2.09308	-1.17242
С	-0.99402	1.66500	-0.20813
Н	0.16372	2.26549	1.50440
Н	0.12816	3.44973	0.19318
Ν	-0.88678	0.20997	-0.05236
Н	-1.92957	1.95951	0.25962
Н	-1.06835	1.90500	-1.27436
С	-2.16266	-0.61330	0.00393
Н	2.96212	-0.43961	-1.20370
Н	3.42628	-0.21623	0.50171
С	2.01620	-1.87146	0.16275
Н	2.40485	-2.66001	-0.47959
Н	2.18802	-2.14151	1.20943
0	-3.17381	0.06784	-0.07835
0	-1.98001	-1.83108	0.12692
Н	-0.17959	-2.27554	0.08118
23			
TBN*-CO2	mecn		
С	0.32682	-0.33878	-0.03477
Ν	1.45414	0.38402	0.02155

Ν

0.60666

-1.64367

-0.08891

С	1.49007	1.82728	-0.11302
С	2.61288	-0.48352	-0.17325
С	0.18037	2.38163	0.42435
Н	2.34190	2.20040	0.45826
Н	1.63417	2.10306	-1.16462
С	-1.00083	1.66075	-0.20581
Н	0.15070	2.25981	1.51095
Н	0.11174	3.44747	0.20155
Ν	-0.89211	0.20427	-0.04300
Н	-1.93709	1.95824	0.25803
Н	-1.06650	1.89638	-1.27327
С	-2.14893	-0.61280	0.00418
Н	2.95942	-0.41997	-1.21064
Н	3.42410	-0.19666	0.49504
С	2.02930	-1.86353	0.15376
Н	2.42060	-2.64707	-0.49248
Н	2.20359	-2.13491	1.19912
0	-3.17206	0.05475	-0.11000
0	-1.97871	-1.83208	0.15449
Н	-0.15546	-2.28665	0.10209

 $TBN-H_2O-CO_2$ _buoac

С	-0.73681	0.20539	-0.07514
Ν	-2.05700	0.42579	0.04061
Ν	-0.06527	1.35884	-0.20758
С	-3.01699	-0.65514	-0.08591
С	-2.34289	1.83339	-0.21379
С	-2.39736	-1.91607	0.50896
С	-1.02567	-2.18823	-0.09868
Ν	-0.19350	-0.98918	-0.06215
С	-0.97288	2.47633	0.04588
Н	-3.92165	-0.37590	0.45723
Н	-3.28412	-0.80648	-1.13965
Н	-2.30104	-1.79053	1.59103
Н	-3.05258	-2.76906	0.32603
Н	-0.50921	-2.97050	0.45835
Н	-1.12772	-2.52749	-1.13509
Н	0.85277	-1.05331	-0.18135
Н	-2.66876	1.97556	-1.25099
Н	-3.11734	2.20231	0.45878
Н	-0.76900	3.30854	-0.62605
Н	-0.88696	2.81983	1.08172
Н	0.93134	1.38065	0.02179
0	2.61925	0.88274	0.56005
С	3.24918	-0.24735	-0.03523
0	4.47153	-0.21655	-0.06771
0	2.43278	-1.10140	-0.43589
Н	3.33669	1.47003	0.81380
26			
TBN-H ₂ O-	CO ₂ _mecn		

С	-0.74487	0.20778	-0.09091

Ν	-2.06073	0.41942	0.03535
Ν	-0.07751	1.36498	-0.23782
С	-3.01968	-0.66671	-0.06407
С	-2.35955	1.82727	-0.20896
С	-2.38393	-1.92131	0.52575
С	-1.02238	-2.18982	-0.10474
Ν	-0.19365	-0.98618	-0.07680
С	-0.99103	2.47713	0.03484
Н	-3.91307	-0.38514	0.49546
Н	-3.30521	-0.82368	-1.11130
Н	-2.26941	-1.79167	1.60563
Н	-3.03767	-2.77780	0.35558
Н	-0.49492	-2.97172	0.44226
Н	-1.14241	-2.52389	-1.14059
Н	0.84211	-1.04760	-0.20917
Н	-2.70064	1.96863	-1.24067
Н	-3.12672	2.18668	0.47625
Н	-0.80158	3.31373	-0.63528
Н	-0.89140	2.81313	1.07135
Н	0.90987	1.39334	0.01875
0	2.60765	0.84167	0.61348
С	3.26091	-0.23256	-0.03204
0	4.48705	-0.18105	-0.05835
0	2.46988	-1.08475	-0.48506
Н	3.30077	1.44081	0.90669

TBN-H₂O-CO₂'_buoac

С	0.73284	0.19294	0.04991
Ν	2.04408	0.47704	-0.07519
Ν	0.00028	1.30165	0.14347
С	3.05830	-0.54506	0.10058
С	2.25132	1.90144	0.16170
С	2.51344	-1.86013	-0.44824
С	1.15470	-2.18395	0.16348
Ν	0.25929	-1.03568	0.07228
С	0.84710	2.46423	-0.10676
Н	3.95283	-0.24038	-0.44599
Н	3.32425	-0.64218	1.16162
Н	2.41649	-1.78090	-1.53467
Н	3.21358	-2.66818	-0.23034
Н	0.68759	-3.01620	-0.36407
Н	1.27026	-2.47616	1.21313
Н	-0.77953	-1.14847	0.14822
Н	2.56784	2.07454	1.19767
Н	3.00580	2.30418	-0.51439
Н	0.59312	3.28709	0.56006
Н	0.74687	2.80143	-1.14368
Н	-1.03456	1.26631	-0.00186
0	-2.66223	0.99604	-0.22023
С	-3.07646	-0.16728	-0.00892
0	-4.43503	-0.33549	-0.04314

0	-2.42547	-1.19949	0.22946
Н	-4.79554	0.53624	-0.22889
26			
TBN-H ₂ O-C	02'_mecn		
С	0.74437	0.19324	0.06382
Ν	2.05065	0.47287	-0.07027
Ν	0.01309	1.30548	0.17462
С	3.06643	-0.55355	0.08077
С	2.26635	1.89792	0.16205
С	2.51009	-1.86289	-0.46890
С	1.15984	-2.18744	0.15993
Ν	0.26531	-1.03509	0.08147
С	0.86288	2.46535	-0.09386
Н	3.95134	-0.24437	-0.47790
Н	3.34651	-0.65730	1.13659
Н	2.39868	-1.77793	-1.55358
Н	3.21038	-2.67375	-0.26349
Н	0.68438	-3.01732	-0.36361
Н	1.28956	-2.47880	1.20766
Н	-0.76511	-1.14578	0.17621
Н	2.59330	2.06863	1.19444
Н	3.01564	2.29513	-0.52226
Н	0.62078	3.29304	0.57089
Н	0.75189	2.79406	-1.13204
Н	-1.01001	1.27262	-0.00383
0	-2.67087	0.98558	-0.27584
С	-3.09522	-0.16145	-0.01159
0	-4.45665	-0.32677	-0.05354
0	-2.45485	-1.18521	0.28726
Н	-4.82018	0.53314	-0.28611

3.7.5 Protonated bases

22			
DBN-H_b	uoac		
С	-0.24222	0.67520	-0.04441
Ν	-0.25633	-0.63768	-0.08924
С	-1.62989	1.23248	-0.03245
С	0.95649	-1.44231	-0.17870
С	-1.61393	-1.18668	-0.16683
С	2.11819	-0.66190	0.42535
Н	0.78389	-2.37084	0.36679
Н	1.14305	-1.69026	-1.22803
С	2.18586	0.74597	-0.15150
Н	1.99410	-0.60610	1.50992
Н	3.05259	-1.18442	0.22010
Ν	0.86863	1.37742	-0.04688
Н	2.89712	1.35913	0.40030
Н	2.48909	0.72571	-1.20184
Н	-1.81924	-1.49672	-1.19565
Н	-1.69516	-2.05595	0.48610
С	-2.48275	-0.00657	0.28260

Н	-3.44463	0.01126	-0.22619
Н	-2.66179	-0.06852	1.35713
Н	-1.73510	2.04184	0.68994
Н	-1.83957	1.63663	-1.02759
Н	0.79905	2.38290	-0.00252
22			
DBN-H_me	ecn		
C	0 2/197	0.67514	0 04401

C	-0.24187	0.67514	-0.04491
Ν	-0.25628	-0.63821	-0.08795
С	-1.62885	1.23195	-0.03448
С	0.95580	-1.44238	-0.18025
С	-1.61324	-1.18618	-0.16685
С	2.11666	-0.66226	0.42553
Н	0.78288	-2.37204	0.36312
Н	1.14304	-1.68564	-1.23044
С	2.18419	0.74598	-0.15042
Н	1.99004	-0.60681	1.50998
Н	3.05134	-1.18414	0.21963
Ν	0.86789	1.37761	-0.04615
Н	2.89497	1.35933	0.40167
Н	2.48702	0.72391	-1.20081
Н	-1.81918	-1.49242	-1.19672
Н	-1.69427	-2.05698	0.48411
С	-2.48082	-0.00617	0.28492
Н	-3.44412	0.01096	-0.22161
Н	-2.65396	-0.06737	1.36062
Н	-1.73081	2.04504	0.68398
Н	-1.83639	1.63030	-1.03231
Н	0.79691	2.38357	-0.00376

TBN-H_buoac

С	-0.26728	-0.67285	0.01695
Ν	-0.27310	0.65815	-0.01738
Ν	-1.51351	-1.16304	0.05054
С	0.93287	1.45046	0.16580
С	-1.63595	1.15922	0.15307
С	2.11629	0.66828	-0.39109
Н	0.80295	2.39101	-0.37095
Н	1.07083	1.67760	1.22904
С	2.15759	-0.74079	0.18500
Н	2.03780	0.61761	-1.48018
Н	3.04429	1.18471	-0.14385
Ν	0.84900	-1.38262	0.02740
Н	2.89167	-1.35009	-0.34085
Н	2.42329	-0.71858	1.24593
Н	0.78184	-2.38714	0.08532
Н	-1.78702	1.48639	1.18669
Н	-1.82649	1.99367	-0.52058
С	-2.47474	-0.08111	-0.18629
Н	-3.34355	-0.18672	0.46008
Н	-2.79454	-0.07628	-1.23136

	-1.71050	-2.11899	-0.20376
21			
TRN-H mor	m		
C	-0 26732	-0 67199	0.01694
N	-0 27347	0.65957	-0.02507
N	-0.27347	-1 16289	0.02307
N C	-1.31400	1 1/10209	0.00104
C	1 62552	1.44992	0.10000
C	-1.05552	0.66057	0.13020
	2.11023	0.00007	-0.30923
п	0.00432	2.39314	-0.305/3
п		1.00970	1.23199
L H	2.15551	-0./4154	0.18444
H	2.03888	0.619/4	-1.4/869
Н	3.043/3	1.18405	-0.13/90
N	0.84771	-1.38236	0.02403
H	2.89008	-1.35091	-0.34053
H	2.41875	-0.71906	1.24595
H	0.77684	-2.38727	0.08359
Н	-1.78245	1.47339	1.19437
Н	-1.82989	1.99871	-0.50836
С	-2.47085	-0.08064	-0.19173
Н	-3.34966	-0.18322	0.44136
Н	-2.77369	-0.07704	-1.24199
Н	-1.70459	-2.11599	-0.21096
24			
MTBN-H_bu	ioac		
_			
С	0.21407	0.44484	-0.02134
C N	0.21407 0.63108	0.44484 -0.82518	-0.02134 -0.03574
C N N	0.21407 0.63108 1.25563	0.44484 -0.82518 1.28999	-0.02134 -0.03574 0.02513
C N N C	0.21407 0.63108 1.25563 -0.26823	0.44484 -0.82518 1.28999 -1.94349	-0.02134 -0.03574 0.02513 0.18803
C N C C	0.21407 0.63108 1.25563 -0.26823 2.07549	0.44484 -0.82518 1.28999 -1.94349 -0.87969	-0.02134 -0.03574 0.02513 0.18803 0.17876
C N C C C	0.21407 0.63108 1.25563 -0.26823 2.07549 -1.63237	0.44484 -0.82518 1.28999 -1.94349 -0.87969 -1.57445	-0.02134 -0.03574 0.02513 0.18803 0.17876 -0.37564
C N C C C H	0.21407 0.63108 1.25563 -0.26823 2.07549 -1.63237 0.14084	0.44484 -0.82518 1.28999 -1.94349 -0.87969 -1.57445 -2.81582	-0.02134 -0.03574 0.02513 0.18803 0.17876 -0.37564 -0.32324
C N C C C H H	0.21407 0.63108 1.25563 -0.26823 2.07549 -1.63237 0.14084 -0.32695	0.44484 -0.82518 1.28999 -1.94349 -0.87969 -1.57445 -2.81582 -2.16836	-0.02134 -0.03574 0.02513 0.18803 0.17876 -0.37564 -0.32324 1.25951
C N C C C H H C	0.21407 0.63108 1.25563 -0.26823 2.07549 -1.63237 0.14084 -0.32695 -2.09566	0.44484 -0.82518 1.28999 -1.94349 -0.87969 -1.57445 -2.81582 -2.16836 -0.22768	-0.02134 -0.03574 0.02513 0.18803 0.17876 -0.37564 -0.32324 1.25951 0.15836
C N C C C H H C H	0.21407 0.63108 1.25563 -0.26823 2.07549 -1.63237 0.14084 -0.32695 -2.09566 -1.57637	0.44484 -0.82518 1.28999 -1.94349 -0.87969 -1.57445 -2.81582 -2.16836 -0.22768 -1.53663	-0.02134 -0.03574 0.02513 0.18803 0.17876 -0.37564 -0.32324 1.25951 0.15836 -1.46664
C N C C C H H C H	0.21407 0.63108 1.25563 -0.26823 2.07549 -1.63237 0.14084 -0.32695 -2.09566 -1.57637 -2.36323	0.44484 -0.82518 1.28999 -1.94349 -0.87969 -1.57445 -2.81582 -2.16836 -0.22768 -1.53663 -2.33605	-0.02134 -0.03574 0.02513 0.18803 0.17876 -0.37564 -0.32324 1.25951 0.15836 -1.46664 -0.10204
C N C C C H H C H N	0.21407 0.63108 1.25563 -0.26823 2.07549 -1.63237 0.14084 -0.32695 -2.09566 -1.57637 -2.36323 -1.06097	0.44484 -0.82518 1.28999 -1.94349 -0.87969 -1.57445 -2.81582 -2.16836 -0.22768 -1.53663 -2.33605 0.80005	-0.02134 -0.03574 0.02513 0.18803 0.17876 -0.37564 -0.32324 1.25951 0.15836 -1.46664 -0.10204 -0.02899
C N C C C H H C H H N H	0.21407 0.63108 1.25563 -0.26823 2.07549 -1.63237 0.14084 -0.32695 -2.09566 -1.57637 -2.36323 -1.06097 -2.98446	0.44484 -0.82518 1.28999 -1.94349 -0.87969 -1.57445 -2.81582 -2.16836 -0.22768 -1.53663 -2.33605 0.80005 0.10372	-0.02134 -0.03574 0.02513 0.18803 0.17876 -0.37564 -0.32324 1.25951 0.15836 -1.46664 -0.10204 -0.02899 -0.37884
C N C C C H H C H H N H H	0.21407 0.63108 1.25563 -0.26823 2.07549 -1.63237 0.14084 -0.32695 -2.09566 -1.57637 -2.36323 -1.06097 -2.98446 -2 34346	0.44484 -0.82518 1.28999 -1.94349 -0.87969 -1.57445 -2.81582 -2.16836 -0.22768 -1.53663 -2.33605 0.80005 0.10372 -0.29219	-0.02134 -0.03574 0.02513 0.18803 0.17876 -0.37564 -0.32324 1.25951 0.15836 -1.46664 -0.10204 -0.02899 -0.37884 1.22326
C N C C C H H C H H N H H C	0.21407 0.63108 1.25563 -0.26823 2.07549 -1.63237 0.14084 -0.32695 -2.09566 -1.57637 -2.36323 -1.06097 -2.98446 -2.34346 -1.43076	0.44484 -0.82518 1.28999 -1.94349 -0.87969 -1.57445 -2.81582 -2.16836 -0.22768 -1.53663 -2.33605 0.80005 0.10372 -0.29219 2.20643	-0.02134 -0.03574 0.02513 0.18803 0.17876 -0.37564 -0.32324 1.25951 0.15836 -1.46664 -0.10204 -0.02899 -0.37884 1.22326 0.06474
C N C C C H H C H H N H H C H	0.21407 0.63108 1.25563 -0.26823 2.07549 -1.63237 0.14084 -0.32695 -2.09566 -1.57637 -2.36323 -1.06097 -2.98446 -2.34346 -1.43076 2.28960	0.44484 -0.82518 1.28999 -1.94349 -0.87969 -1.57445 -2.81582 -2.16836 -0.22768 -1.53663 -2.33605 0.80005 0.10372 -0.29219 2.20643 -1.11888	-0.02134 -0.03574 0.02513 0.18803 0.17876 -0.37564 -0.32324 1.25951 0.15836 -1.46664 -0.10204 -0.02899 -0.37884 1.22326 0.06474 1.22584
C N C C C H H C H H N H H C H H	0.21407 0.63108 1.25563 -0.26823 2.07549 -1.63237 0.14084 -0.32695 -2.09566 -1.57637 -2.36323 -1.06097 -2.98446 -2.34346 -1.43076 2.28960 2.53260	0.44484 -0.82518 1.28999 -1.94349 -0.87969 -1.57445 -2.81582 -2.16836 -0.22768 -1.53663 -2.33605 0.80005 0.10372 -0.29219 2.20643 -1.11888 -1.63166	-0.02134 -0.03574 0.02513 0.18803 0.17876 -0.37564 -0.32324 1.25951 0.15836 -1.46664 -0.10204 -0.02899 -0.37884 1.22326 0.06474 1.22584 -0.46327
C N N C C C C H H C H H C H H C H H C H H C C H H C C C H H C C C C H H C C C C C H H C	0.21407 0.63108 1.25563 -0.26823 2.07549 -1.63237 0.14084 -0.32695 -2.09566 -1.57637 -2.36323 -1.06097 -2.98446 -2.34346 -1.43076 2.28960 2.53260 2.53260	0.44484 -0.82518 1.28999 -1.94349 -0.87969 -1.57445 -2.81582 -2.16836 -0.22768 -1.53663 -2.33605 0.80005 0.10372 -0.29219 2.20643 -1.11888 -1.63166 0.54756	-0.02134 -0.03574 0.02513 0.18803 0.17876 -0.37564 -0.32324 1.25951 0.15836 -1.46664 -0.10204 -0.02899 -0.37884 1.22326 0.06474 1.22584 -0.46327 -0.18276
C N C C C C H H C H H C H H C H H C H H C H H C H H C H H C C C C H H C C C C H H C C C C H H C C C C H H C C C C H H H C C C H H H H C C C H	0.21407 0.63108 1.25563 -0.26823 2.07549 -1.63237 0.14084 -0.32695 -2.09566 -1.57637 -2.36323 -1.06097 -2.98446 -2.34346 -1.43076 2.28960 2.53260 2.53260 2.50266 3.29117	0.44484 -0.82518 1.28999 -1.94349 -0.87969 -1.57445 -2.81582 -2.16836 -0.22768 -1.53663 -2.33605 0.80005 0.10372 -0.29219 2.20643 -1.11888 -1.63166 0.54756 0.92613	-0.02134 -0.03574 0.02513 0.18803 0.17876 -0.37564 -0.32324 1.25951 0.15836 -1.46664 -0.10204 -0.02899 -0.37884 1.22326 0.06474 1.22584 -0.46327 -0.18276 0.46427
C N C C C H H C H H C H H C H H C H H C H H C H H C H H C H H C C C C H H H C C C C H H H C C C H H C C C C H H H C C C H H H H C C C H	0.21407 0.63108 1.25563 -0.26823 2.07549 -1.63237 0.14084 -0.32695 -2.09566 -1.57637 -2.36323 -1.06097 -2.98446 -2.34346 -1.43076 2.28960 2.53260 2.53260 2.50266 3.29117 2.81990	0.44484 -0.82518 1.28999 -1.94349 -0.87969 -1.57445 -2.81582 -2.16836 -0.22768 -1.53663 -2.33605 0.80005 0.10372 -0.29219 2.20643 -1.11888 -1.63166 0.54756 0.92613 0.61927	-0.02134 -0.03574 0.02513 0.18803 0.17876 -0.37564 -0.32324 1.25951 0.15836 -1.46664 -0.10204 -0.02899 -0.37884 1.22326 0.06474 1.22584 -0.46327 -0.18276 0.46427 -1.22637
C N C C C H H C H H C H H C H H C H H H C H H H C H H H C H	0.21407 0.63108 1.25563 -0.26823 2.07549 -1.63237 0.14084 -0.32695 -2.09566 -1.57637 -2.36323 -1.06097 -2.98446 -2.34346 -1.43076 2.28960 2.53260 2.50266 3.29117 2.81980 -2.5082	0.44484 -0.82518 1.28999 -1.94349 -0.87969 -1.57445 -2.81582 -2.16836 -0.22768 -1.53663 -2.33605 0.80005 0.10372 -0.29219 2.20643 -1.11888 -1.63166 0.54756 0.92613 0.61937 2.29532	-0.02134 -0.03574 0.02513 0.18803 0.17876 -0.37564 -0.32324 1.25951 0.15836 -1.46664 -0.10204 -0.02899 -0.37884 1.22326 0.06474 1.22584 -0.46327 -0.18276 0.46427 -1.22637 -0.05171
C N C C C H H C H H C H H C H H C H H H H	0.21407 0.63108 1.25563 -0.26823 2.07549 -1.63237 0.14084 -0.32695 -2.09566 -1.57637 -2.36323 -1.06097 -2.98446 -2.34346 -1.43076 2.53260 2.53260 2.50266 3.29117 2.81980 -2.50982 -1.14782	0.44484 -0.82518 1.28999 -1.94349 -0.87969 -1.57445 -2.81582 -2.16836 -0.22768 -1.53663 -2.33605 0.80005 0.10372 -0.29219 2.20643 -1.11888 -1.63166 0.54756 0.92613 0.61937 2.28532 2.62925	-0.02134 -0.03574 0.02513 0.18803 0.17876 -0.37564 -0.32324 1.25951 0.15836 -1.46664 -0.10204 -0.02899 -0.37884 1.22326 0.06474 1.22584 -0.46327 -0.18276 0.46427 -1.22637 -0.05171 1.03207
C N C C C H H C H H C H H C H H C H H H H	0.21407 0.63108 1.25563 -0.26823 2.07549 -1.63237 0.14084 -0.32695 -2.09566 -1.57637 -2.36323 -1.06097 -2.98446 -2.34346 -1.43076 2.28960 2.53260 2.50266 3.29117 2.81980 -2.50982 -1.14782 -0.96438	0.44484 -0.82518 1.28999 -1.94349 -0.87969 -1.57445 -2.81582 -2.16836 -0.22768 -1.53663 -2.33605 0.80005 0.10372 -0.29219 2.20643 -1.11888 -1.63166 0.54756 0.92613 0.61937 2.28532 2.62925 2.78170	-0.02134 -0.03574 0.02513 0.18803 0.17876 -0.37564 -0.32324 1.25951 0.15836 -1.46664 -0.10204 -0.02899 -0.37884 1.22326 0.06474 1.22584 -0.46327 -0.18276 0.46427 -1.22637 -0.05171 1.03307 -0.73785
C N N C C C H H C H H N H H H H H H H H	0.21407 0.63108 1.25563 -0.26823 2.07549 -1.63237 0.14084 -0.32695 -2.09566 -1.57637 -2.36323 -1.06097 -2.98446 -2.34346 -1.43076 2.58960 2.53260 2.50266 3.29117 2.81980 -2.50982 -1.14782 -0.96438 1.17110	0.44484 -0.82518 1.28999 -1.94349 -0.87969 -1.57445 -2.81582 -2.16836 -0.22768 -1.53663 -2.33605 0.80005 0.10372 -0.29219 2.20643 -1.11888 -1.63166 0.54756 0.92613 0.61937 2.28532 2.62925 2.78170 2.25895	-0.02134 -0.03574 0.02513 0.18803 0.17876 -0.37564 -0.32324 1.25951 0.15836 -1.46664 -0.10204 -0.02899 -0.37884 1.22326 0.06474 1.22584 -0.46327 -0.18276 0.46427 -1.22637 -0.05171 1.03307 -0.73785 -0.23973

24			
MTBN-H_mecn			
С	0.21464	0.44551	-0.02473
Ν	0.63231	-0.82502	-0.04680
Ν	1.25572	1.29116	0.03399
С	-0.26571	-1.94156	0.18955
С	2.07478	-0.87761	0.18090
С	-1.63170	-1.57700	-0.37164
Н	0.14300	-2.81765	-0.31551
Н	-0.32094	-2.15566	1.26334
С	-2.09364	-0.22842	0.15844
Н	-1.57900	-1.54369	-1.46312
Н	-2.36090	-2.33764	-0.09064
Ν	-1.06089	0.79946	-0.03721
Н	-2.98518	0.10116	-0.37503
Н	-2.33462	-0.29014	1.22500
С	-1.43414	2.20451	0.06629
Н	2.27872	-1.11029	1.23155
Н	2.53806	-1.63211	-0.45344
С	2.50074	0.54787	-0.18337
Н	3.29455	0.92588	0.45735
Н	2.80868	0.61909	-1.22981
Н	-2.51126	2.28076	-0.06887
Н	-1.16819	2.61497	1.04470
Н	-0.95275	2.79057	-0.71918
Н	1.17011	2.25569	-0.24887