Electronic Supplementary Material (ESI) for Polymer Chemistry. This journal is © The Royal Society of Chemistry 2021

Electronic supplementary information (ESI)

Imidazole-based Cu(I)-catalyzed click polymerization of diazides and diynes under mild conditions

Baixue Li, a Jia Wang, Anjun Qin and Ben Zhong Tang and Ben Zhong Tang

^a State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, SCUT-HKUST Joint Research Institute, AIE Institute, Center for

Aggregation-Induced Emission, South China University of Technology (SCUT), Guangzhou 510640, China.

E-mail: msqinaj@scut.edu.cn

^b Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute for Advanced Study, and Department of Chemical and Biological

Engineering, The Hong Kong University of Science & Technology (HKUST), Clear Water Bay, Kowloon,

Hong Kong, China. E-mail: tangbenz@ust.hk

Contents

Experimental section	S4				
Fig. S1 Kinetics curves of different copper catalysts on the click polymerization.	S 6				
Fig. S2 FT-IR spectra of 1a (A), 2c (B) and P1a2c (C).	S 6				
Fig. S3 FT-IR spectra of 1b (A), 2a (B) and P1b2a (C).	S7				
Fig. S4 FT-IR spectra of 1b (A), 2c (B) and P1b2c (C).	S7				
Fig. S5 FT-IR spectra of 1c (A), 2b (B) and P1c2b (C).	S8				
Fig. S6 FT-IR spectra of 1c (A), 2d (B) and P1c2d (C).	S 8				
Fig. S7 ¹ H NMR spectra of 2c (A), 1a (B) and P1a2c (C) in CDCl ₃ . The solvent peaks are marked	with				
asterisks.	S9				
Fig. S8 ¹ H NMR spectra of 2a (A), 1b (B) and P1b2a (C) in CDCl ₃ . The solvent peaks are marked	with				
asterisks.	S10				
Fig. S9 ¹ H NMR spectra of 2c (A), 1b (B) and P1b2c (C) in CDCl ₃ . The solvent peaks are marked	with				
asterisks.	S11				
Fig. S10 ¹ H NMR spectra of 2b (A), 1c (B) and P1c2b (C) in CDCl ₃ . The solvent peaks are marked	with				
asterisks.	S12				
Fig. S11 ¹ H NMR spectra of 2d (A), 1c (B) and P1c2d (C) in CDCl ₃ . The solvent peaks are marked	with				
asterisks.	S13				
Fig. S12 ¹³ C NMR spectra of 2c (A), 1a (B) and P1a2c (C) in CDCl ₃ . The solvent peaks are marked	with				
asterisks.	S14				
Fig. S13 ¹³ C NMR spectra of 2a (A), 1b (B) and P1b2a (C) in CDCl ₃ . The solvent peaks are marked	with				
asterisks.	S15				
Fig. S14 ¹³ C NMR spectra of 2c (A), 1b (B) and P1b2c (C) in CDCl ₃ . The solvent peaks are marked	with				
asterisks.	S16				
Fig. S15 ¹³ C NMR spectra of 2b (A), 1c (B) and P1c2b (C) in CDCl ₃ . The solvent peaks are marked	with				
asterisks.	S17				
Fig. S16 ¹³ C NMR spectra of 2d (A), 1c (B) and P1c2d (C) in CDCl ₃ . The solvent peaks are marked	with				
asterisks.	S18				
Fig. S17 UV-vis absorption spectra of P 1a2a -P 1c2d in THF solutions, polymer concentration: 10 ⁻⁵ M.	S19				
Fig. S18 (A) PL decay curves of P1a2a at 374 nm in THF solution in the presence of different amounts of	of PA.				
Polymer concentration: 10 μ M; λ_{ex} : 320 nm. (B) Normalized absorption spectrum of PA and PL spectrum of					

P1a2a in THF solutions.	S19
Fig. S19 FT-IR spectrum of Cu-Im.	S20
Fig. S20 ¹ H NMR spectrum of Cu-Im in CD ₂ Cl ₂ . The solvent peak is marked with asterisk.	S20
Fig. S21 ¹³ C NMR spectrum of Cu-Im in CD ₂ Cl ₂ . The solvent peak is marked with asterisk.	S20
Table S1 Effect of different copper catalysts on the click polymerization	S21
Table S2 Refractive indices (n) , Abbé numbers (v) , modified Abbé numbers (v') , optical dispersions (D)	O and
D') and thickness of thin films of polymers P1a2a-P1c2d, n values of commercial polymers	S21
References	S21

Experimental section

Synthesis of monomers 1a-1c and 2a-2d

Synthesis of bis(4-azidophenyl)methane (1a)

$$H_2N$$
 + t -BuONO + Me_3SiN_3 $0 \, ^{\circ}C - RT$ N_3 N_3 N_3

This monomer was prepared according to previously published work.¹

Synthesis of 4,4'-oxybis(azidobenzene) (1b)

$$H_2N$$
 $+$ t -BuONO + Me_3SiN_3
 $0 \circ C - RT$
 $O \cap C \cap C$
 $O \cap C \cap C$
 $O \cap C$

This monomer was prepared according to previously published work.¹

Synthesis of 1,4-bis((6-azidohexyl)oxy)benzene (1c)

$$HO \longrightarrow OH + Br \longrightarrow Br \longrightarrow Br \longrightarrow Br \longrightarrow O \longrightarrow O$$
 $NaN_3, RT \longrightarrow N_3 \longrightarrow O \longrightarrow O$
 $NaN_3, RT \longrightarrow O$
 $NaN_3 \longrightarrow O$

This monomer was prepared according to our previously published procedures.²

Synthesis of 2,7-diethynyl-9,9-dioctyl-9H-fluorene (2a)

This monomer was prepared according to our previously published procedures.³

Synthesis of 4,4'-(propane-2,2-diyl)bis((prop-2-yn-1-yloxy)benzene) (2b)

This monomer was prepared according to our previously published procedures.⁴

Synthesis of 2,7-diethynyl-9-(heptadecan-9-yl)-9H-carbazole (2c)

This monomer was prepared according to our previously published procedures.³

Synthesis of 4,4'-(isopropylidenediphenyl)-bis(4-ethynylbenzyl) ether (2d)

This monomer was prepared according to our previously published procedures.^{5,6}

Synthesis of Cu-Im catalyst

CuBr +
$$N = (CH_2)_{11}$$
 CH₃CN $N = (CH_2)_{11}$ $N = (CH_2)_{1$

This catalyst was prepared according to previously published papers.^{7,8}

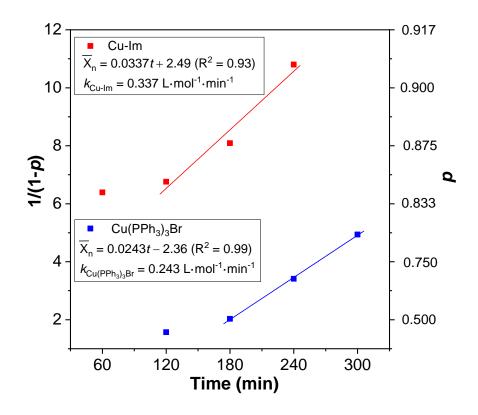


Fig. S1 Kinetics curves of different copper catalysts on the click polymerization.

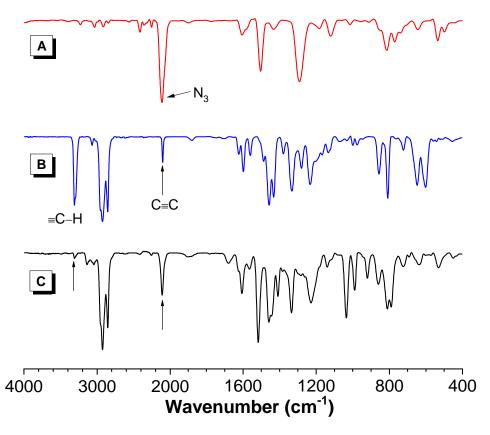


Fig. S2 FT-IR spectra of 1a (A), 2c (B) and P1a2c (C).

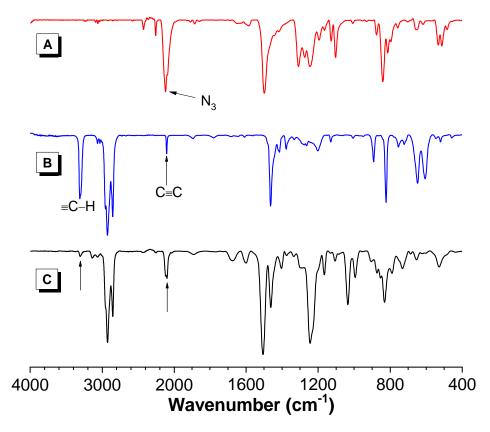


Fig. S3 FT-IR spectra of 1b (A), 2a (B) and P1b2a (C).

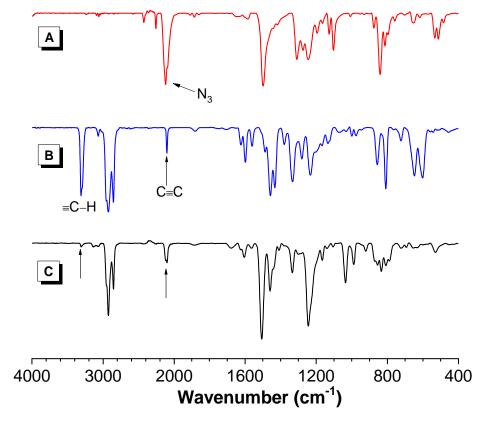


Fig. S4 FT-IR spectra of 1b (A), 2c (B) and P1b2c (C).

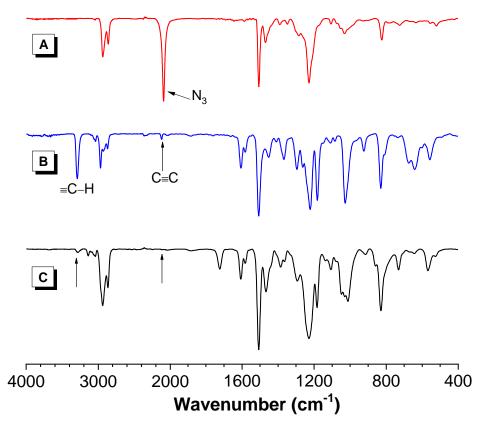


Fig. S5 FT-IR spectra of 1c (A), 2b (B) and P1c2b (C).

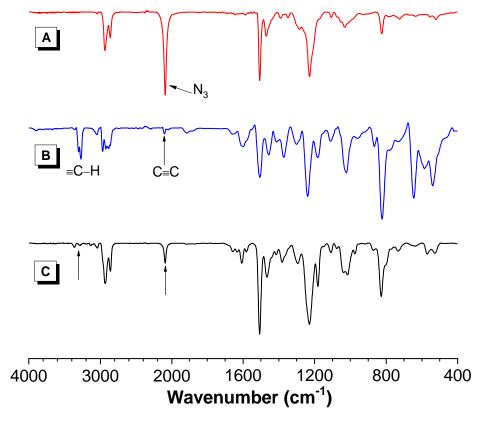


Fig. S6 FT-IR spectra of 1c (A), 2d (B) and P1c2d (C).

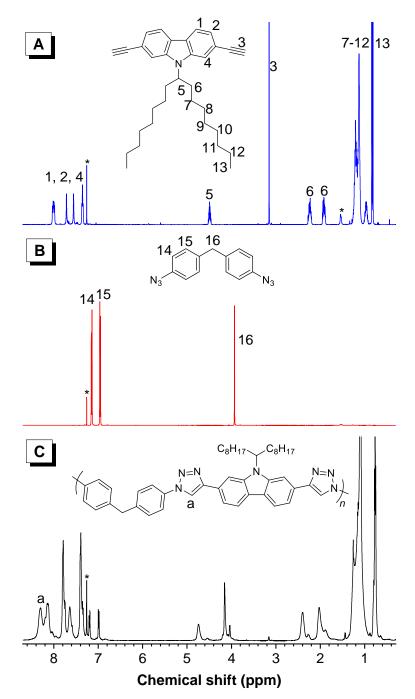


Fig. S7 1 H NMR spectra of 2c (A), 1a (B) and P1a2c (C) in CDCl₃. The solvent peaks are marked with asterisks.

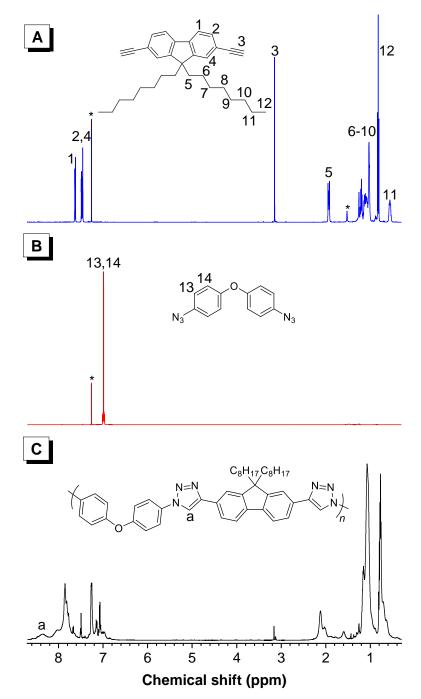


Fig. S8 ¹H NMR spectra of 2a (A), 1b (B) and P1b2a (C) in CDCl₃. The solvent peaks are marked with asterisks.

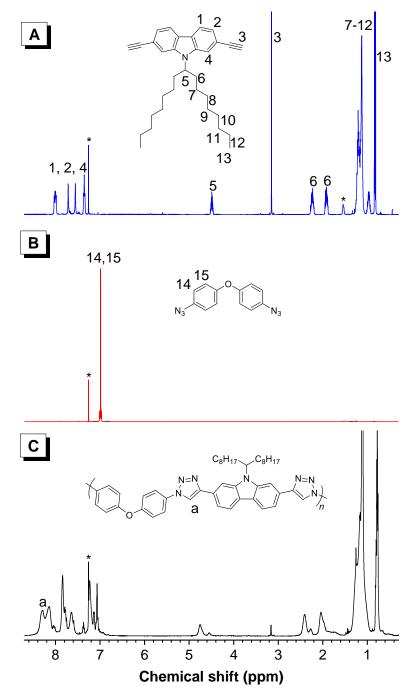


Fig. S9 1 H NMR spectra of 2c (A), 1b (B) and P1b2c (C) in CDCl₃. The solvent peaks are marked with asterisks.

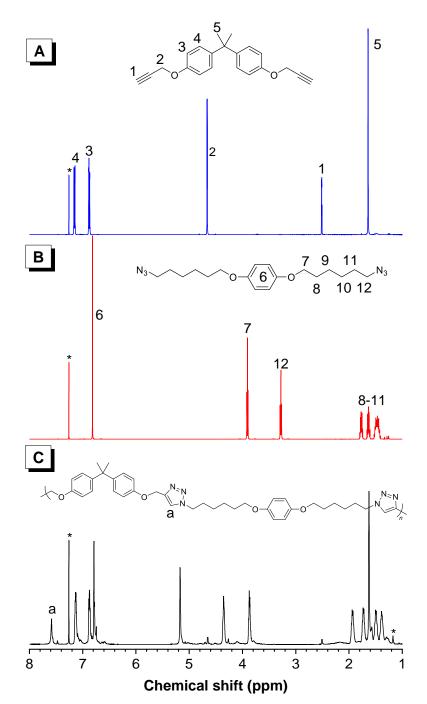


Fig. S10 1 H NMR spectra of 2b (A), 1c (B) and P1c2b (C) in CDCl₃. The solvent peaks are marked with asterisks.

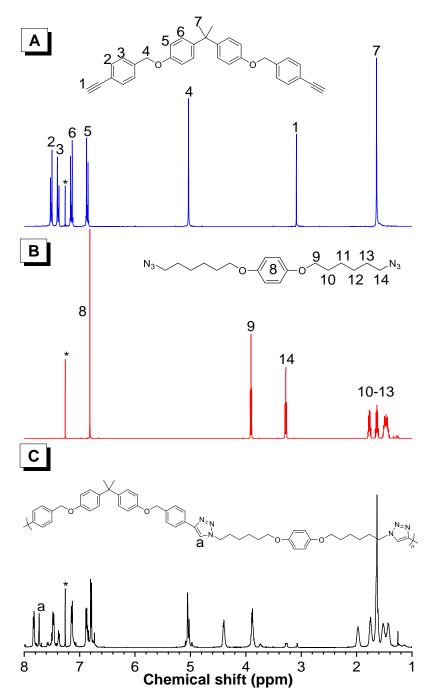


Fig. S11 1 H NMR spectra of 2d (A), 1c (B) and P1c2d (C) in CDCl₃. The solvent peaks are marked with asterisks.

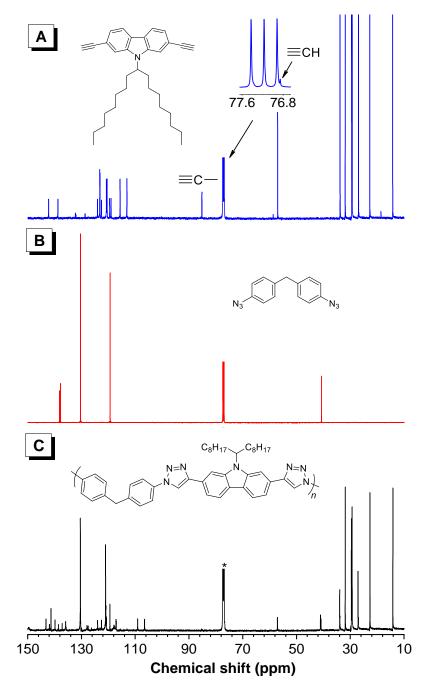


Fig. S12 ¹³C NMR spectra of 2c (A), 1a (B) and P1a2c (C) in CDCl₃. The solvent peaks are marked with asterisks.

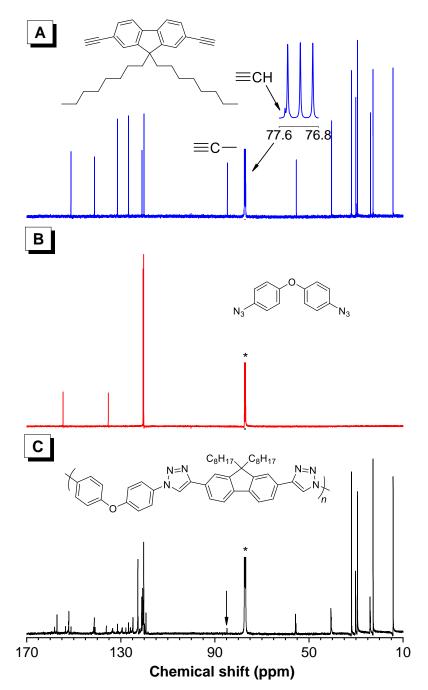


Fig. S13 ¹³C NMR spectra of 2a (A), 1b (B) and P1b2a (C) in CDCl₃. The solvent peaks are marked with asterisks.

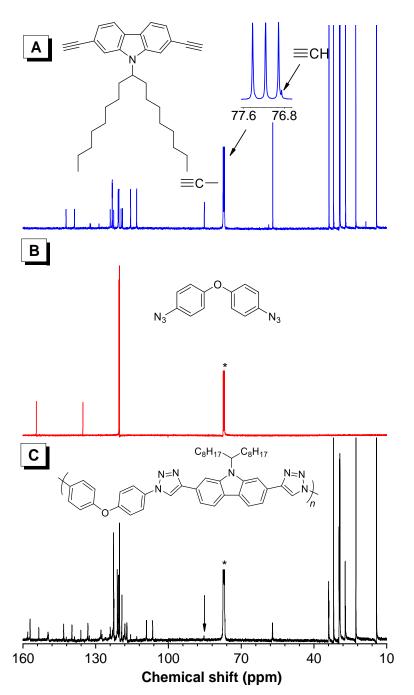


Fig. S14 13 C NMR spectra of 2c (A), 1b (B) and P1b2c (C) in CDCl₃. The solvent peaks are marked with asterisks.

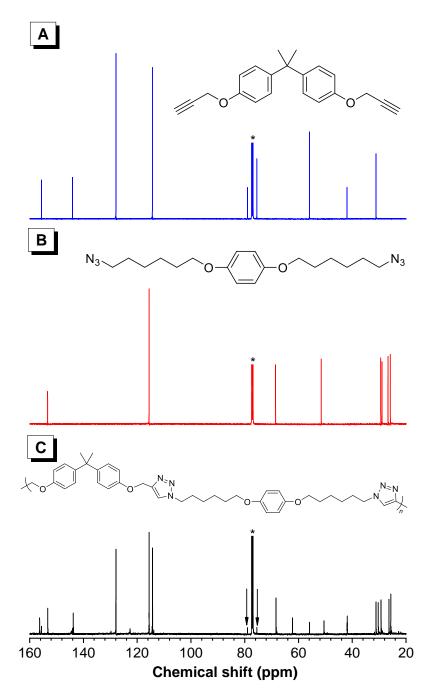


Fig. S15 ¹³C NMR spectra of 2b (A), 1c (B) and P1c2b (C) in CDCl₃. The solvent peaks are marked with asterisks.

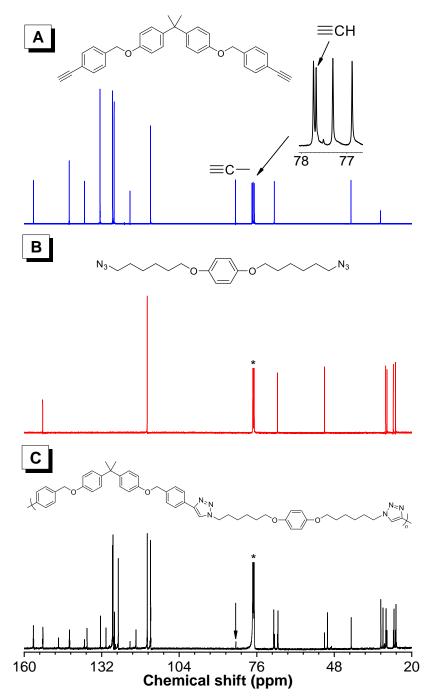


Fig. S16 ¹³C NMR spectra of 2d (A), 1c (B) and P1c2d (C) in CDCl₃. The solvent peaks are marked with asterisks.

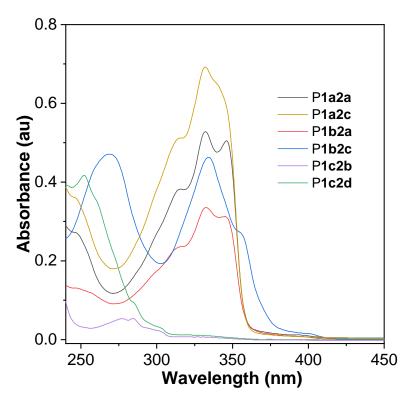


Fig. S17 UV-vis absorption spectra of P1a2a-P1c2d in THF solutions, polymer concentration: 10⁻⁵ M.

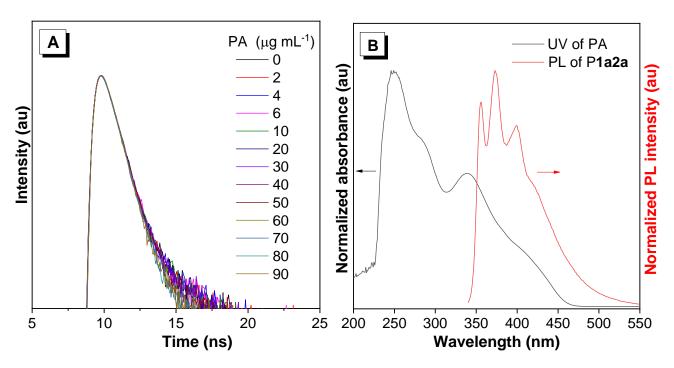


Fig. S18 (A) PL decay curves of P1a2a at 374 nm in THF solution in the presence of different amounts of PA. Polymer concentration: 10 μ M; λ_{ex} : 320 nm. (B) Normalized absorption spectrum of PA and PL spectrum of P1a2a in THF solutions.

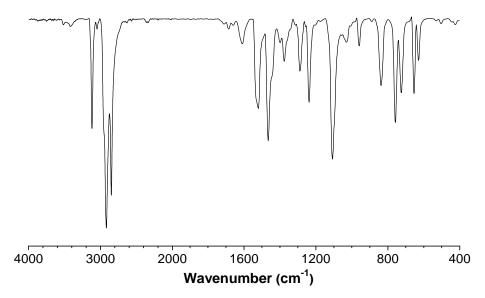


Fig. S19 FT-IR spectrum of Cu-Im.

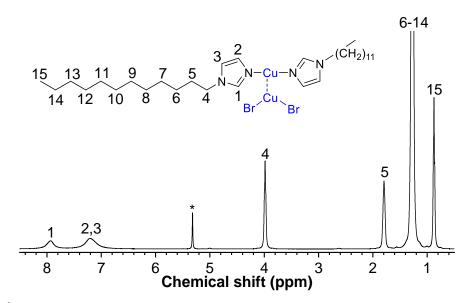


Fig. S20 ¹H NMR spectrum of Cu-Im in CD₂Cl₂. The solvent peak is marked with asterisk.

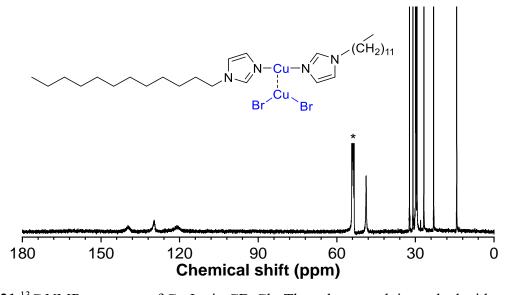


Fig. S21 13 C NMR spectrum of Cu-Im in CD₂Cl₂. The solvent peak is marked with asterisk.

Table S1 Effect of different copper catalysts on the click polymerization^a

Cu-Im	<i>t</i> (h)	Yield (%)	$M_{ m w}{}^b$	PDI^b	${M_{ m n}}^b$	$\overline{\mathbf{X}}_{\mathbf{n}}{}^{c}$	p^d
	1	13	6600	1.50	4400	6.39	0.84
	2	30	7500	1.61	4658	6.76	0.85
	3	62	11 200	2.01	5572	8.09	0.88
	4	92	16 000	2.15	7442	10.80	0.91
Cu(PPh ₃) ₃ Br	<i>t</i> (h)	Yield (%)	$M_{ m w}{}^b$	PDI^b	${M_{ m n}}^b$	$\overline{\mathbf{X}}_{\mathbf{n}}{}^{c}$	p^d
	2	trace	1105	1.02	1083	1.57	0.36
	3	trace	1790	1.28	1398	2.03	0.51
	4	trace	3600	1.53	2352	3.41	0.71
	5	trace	3640	1.07	3401	4.94	0.80

^a Carried out in THF at 30 °C under nitrogen, [1a] = [2a] = 0.05 M, [Cu]/[1a] = 0.1. ^b Estimated by APC using THF as the eluent on the basis of a PS calibration, M_w = weight-average molecular weight, PDI = M_w/M_n , M_n = number-average molecular weight. ^c Degree of polymerization. ^d Extent of reaction.

Table S2 Refractive indices (n), Abbé numbers (v), modified Abbé numbers (v'), optical dispersions (D and D') and thickness of thin films of polymers P1a2a-P1c2d, n values of commercial polymers

Polymer	n^a	v^b	D^c	v^{id}	$D^{!e}$	Thickness (nm)	Commercial polymer	n^f
P1a2a	1.611	55.7	0.0179	214.1	0.0047	45.34	poly(methyl methacrylate)	1.489
P1a2c	1.566	35.8	0.0279	137.4	0.0073	51.89	poly(dimethylsiloxane)	1.428
P1b2a	1.644	12.5	0.0797	74.6	0.0134	110.87	poly(vinyl chloride)	1.540
P1b2c	1.634	15.7	0.0636	56.9	0.0176	62.98	poly(vinyl alcohol)	1.477
P1c2b	1.583	32.2	0.0310	141.5	0.0071	99.08	poly(lactic acid)	1.451
P1c2d	1.591	30.3	0.0329	179.7	0.0056	50.06	cellulose	1.468

^a Data of polymers at 632.8 nm. ^b $v = (n_{589.3}-1)/(n_{486.1}-n_{656.3})$. ^c D = 1/v. ^d $v' = (n_{1319}-1)/(n_{1060}-n_{1550})$. ^e D' = 1/v'.

References

- 1. Y. Zhao and T. M. Swager, Eur. J. Org. Chem., 2015, 2015, 4593-4597.
- A. Qin, L. Tang, J. W. Y. Lam, C. K. W. Jim, Y. Yu, H. Zhao, J. Z. Sun and B. Z. Tang, *Adv. Funct. Mater.*, 2009, 19, 1891–1900.
- 3. E. Zhao, H. Li, J. Ling, H. Wu, J. Wang, S. Zhang, J. W. Y. Lam, J. Z. Sun, A. Qin and B. Z. Tang, *Polym. Chem.*, 2014, **5**, 2301–2308.

^fData of commercial polymers at 632.8 nm taken from refractive index database.

- 4. M. M. Lakouraj, V. Hasantabar and N. Bagheri, J. Polym., 2013, 2013, 167106.
- 5. J. Wang, J. Mei, W. Yuan, P. Lu, A. Qin, J. Z. Sun, Y. Ma and B. Z. Tang, *J. Mater. Chem.*, 2011, **21**, 4056–4059.
- 6. B. Yao, J. Mei, J. Li, J. Wang, H. Wu, J. Z. Sun, A. Qin and B. Z. Tang, *Macromolecules*, 2014, 47, 1325–1333.
- 7. M. Stricker, T. Linder, B. Oelkers and J. Sundermeyer, Green Chem., 2010, 12, 1589-1598.
- 8. J. N. Xie, B. Yu, Z. H. Zhou, H. C. Fu, N. Wang and L. N. He, *Tetrahedron Lett.*, 2015, **56**, 7059–7062.