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Structure relaxation and lattice mismatch

As the band structure of phosphorene is very sensitive to strain[1], during the geometry 

optimization, we fixed the in-plane lattice parameters of the heterostructure to those of 

phosphorene (a = 10.02 Å, b = 9.18 Å). As a result of relaxation, there is no strain applied 

along the cross-plane direction. Finally, all the forces on each atom are relaxed within 0.01 

eV/Å. After relaxation, the xy plane of gold (111) layers have strains of 1.5% and 4.3% along 

x- and y-axis, respectively. The graphene layer also has biaxial strains of 1.6% and 7.5% 

along two axes. The work functions of the gold (111) surface and graphene with the 

configuration in the heterostructure are calculated to be 5.1 eV and 4.6 eV, respectively, in 

good agreement with experiments. So we believe that the relaxed structure is reasonable when 

comparing with experiments. 

The work function of gold is calculated by extracting the atomic coordinates of gold layers 

in the heterostructure.  A vacuum of 10 Angstrom is added on top of gold layers. The Fermi 

energy EF and the electrostatic potential Evac in the middle of the vacuum are extracted from a 

self-consistent calculation. Then, the work function W is obtained as W = EF - Evac. The 

ionization potential of phosphorene is calculated in the same way but replacing the Fermi 

energy by the energy of valence band maximum EVBM. 

Wannier function calculations

Seven Wannier functions (WFs) with 5 atomic centered d orbitals and 2 σ orbitals centered 

on tetrahedron-interstitials (t orbital)[2] are used to represent the gold atoms at the interface 

with graphene, while one t orbital is omitted for the inner gold atoms. Four atomic centered 

sp3 orbitals are used for constructing the WFs of each phosphorus atom. For carbon atoms, 

there are two kinds of WFs with σ orbitals centered on mid-bond points and atomic centered 

pz orbitals. After wannierization, the spatial spread of each WF is reduced to 15 bohr2. 

Electron transport.
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To investigate the transport properties of the heterostructure, we use the real space Green’s 

function method with the localized-orbitals basis Hamiltonian constructed by using 

maximally localized Wannier functions (MLWFs). The retarded Green’s function of the 

heterostucture is:

 (S1)  1r
L RE i


      G I H Σ Σ

where I the identity matrix, E the electron energy, iη is a small imaginary part used to impose 

causality.  denotes the self-energy of the left (L) or right (R) leads,  ,C Cg L R      H H

and gβ is the surface Green's function of the leads, which can be calculated from the 

Hamiltonian matrix elements via an iterative procedure.[3] The electron transmission function

can be calculated as: E

 (S2)   Tr r a
L RE  G Γ G Γ

where is the advanced Green’s function and . It should  †a rG G   † ,L Ri     Γ Σ Σ

be noted that the above method is used for 1D transport. For the case of 3D transport, one 

uses translational invariance in the in-plane directions, i.e. the Bloch theorem, to describe the 

Hamiltonian as a sum over kpoints, in the 2D Brillouin zone perpendicular to the transport 

direction, of 1D Hamiltonians. For each k point, the k-dependent transmission  should  ,E k

be calculated and the total transmission would be , where wk is the    ,E E w  k
k

k

weight of each transverse k point determined from the symmetry of the kpoint within the 

Brillouin zone. In the transmission calculation, we use a 30×30 k mesh to initialize the k-

resolution and further interpolate[4] to a 180×180 k grid to obtain a smooth transmission 

function.

By using the electron transmission function, one can obtain the coherent transport 

coefficients under the linear response approximation[5, 6]:
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where G, S, and el denote the electron conductance, Seebeck coefficient, and electron 

thermal conductance, respectively. e is the charge of electron, and h is the Planck constant, μ 

is the chemical potential, T is the absolute temperature, and 

 is the Fermi-Dirac distribution function. Based on     , 1/ exp / 1, Bf E E kT T     

the electron transmission function, the 2-probe electrical current and electron thermal current 

can be calculated from the knowledge of the temperature and chemical potentials on both 

sides (L, R) as:

 (S4)  2 / L RJ e h dE E f f 
 (S5)   2 / RQ LJ h dE E E f f   

Phonon transport.

First, we would like to clarify the labeling of the modes in graphene or phosphorene: The 

longitudinal and transverse modes of these layered structures, when isolated, have the 

polarization vector in the plane of G or P, and therefore do not contribute to thermal transport 

across these layers. Only the ZA modes with quadratic dispersion and polarization along the 

cross-plane direction, z, significantly contribute to the transport of heat. This labeling is the 

traditional way we refer to the modes of the isolated layer, and should not be confused with 

the way we label modes of the device. For instance a longitudinal mode of the device, has its 

momentum and polarization along z, while we are referring to the projection of this mode in 

the layers as ZA modes because they both have the same polarization.
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The phonon cutoff frequency of gold is about 150 cm-1, the intralayer optical phonon modes 

of phosphorene have a maximum frequency of about 470 cm-1, while graphene has a 

maximum frequency of about 1600 cm-1. As a result of this significant mismatch between the 

phonon spectra of gold and the layers, optical phonons of the latter, without considering 

phonon-phonon interaction, remain localized in the barrier region and only modes of 

frequency lower than 150 cm-1 can propagate through the device. Therefore only the acoustic 

modes of the layers, which have polarization along the transport direction z, namely the so-

called ZA modes, would mostly contribute to the transport of heat. Thus, the contribution of 

intralayer optical phonons and the in-plane LA and TA modes are negelected in the thermal 

conductance calculation. This assumption has been validated in the case of 3 graphene layers 

between two gold leads, as displayed in Figure S3, where it was shown that the contribution 

of any mode other than ZA was more than 4 orders of magnitude smaller than that of the ZA 

mode.

Efficiency (COP) calculation.

The coefficient of performance (COP) is defined as the ratio of carried heat to the provided 

electrical energy:

                                                                                               (S6)                                         COP /Q ph TJ JV  

To calculate the COP, we need to fix two of the four parameters (J, JQ, ΔT, V) and calculate 

the remaining two from equations (S4, S5) defining the currents in terms of applied electrical 

and thermal fields, and the knowledge of the transmission function. In practice, we fix the 

lead temperatures and chemical potentials (i.e. ΔT  and Δ) and calculate the currents from 

(S4) and (S5). The reported COP was obtained by maximizing COP with respect to the 

applied bias at fixed ΔT. The applied bias V goes into the Fermi-Dirac distribution of the two 

electrodes: we set the chemical potential of the left electrode as – e×V/2, and that of the 

right electrode as e×V/2. It turns out, as we also added in text, that the optimal bias is on 
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the order of few meVs, which implies there is hardly any shift in the energy levels under bias, 

and therefore one is in the linear regime where the transmission function is that of zero bias 

and zero temperature difference with a very good approximation.
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Φ (eV/Å2/amu) Au-Au Au-G G-G
zz 0.0383 0.0057 0.0168
xx or yy 0.00337 9.14e-5 0.000243

Table S1. Interlayer force constants between gold-gold, gold-graphene and graphene-

graphene layers, obtained by moving one layer rigidly by 0.2 Ang and calculating the net 

restoring force on that layer as explained in the Equation (6) of the main text. As can be noted 

the zz components are much larger, justifying why in-plane modes have been neglected.
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Figure S1. (a) pz Wannier function (WF) of graphene overlaps with sp3 WF of phosphorene. 

(b) Surface WF of gold overlaps with pz WF of graphene.
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Figure S2. Local band structure and density of states (DOS) of graphene embedded in the 

heterostructure. The black dashed lines indicate the Fermi level.
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Figure S3. Phonon transmission function of Au-3G-Au system. (a) Modes polarized along 

the z direction (ZA modes) with k = 0 (normal incidence). (b) Modes with in-plane 

polarization and k = 0 (normal incidence). (c) Same as (a) but summed over all kpoints in the 

2d Brillouin zone. (d) Same as (b) but summed over all kpoints in the 2d Brillouin zone. Note 

the transmission of the ZA mode is 5 orders of magnitude larger than the in-plane modes


